Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 99744 by Rio Michael last updated on 23/Jun/20

A wire that is highly insulated has a radius of 2.1 mm and a current  of 6 Agoes through it. The material used in insulation has thickness  of 2.1 mm with a thermal conductivity of 0.2 W/Km. the material used  in constructing the wire has a resistivity of 4.2 × 10^(−7) Ωm. assume the   the materials reach steady state. Find the difference in temperature  between the outer suface and inner surface.

$$\mathrm{A}\:\mathrm{wire}\:\mathrm{that}\:\mathrm{is}\:\mathrm{highly}\:\mathrm{insulated}\:\mathrm{has}\:\mathrm{a}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{2}.\mathrm{1}\:\mathrm{mm}\:\mathrm{and}\:\mathrm{a}\:\mathrm{current} \\ $$$$\mathrm{of}\:\mathrm{6}\:\mathrm{Agoes}\:\mathrm{through}\:\mathrm{it}.\:\mathrm{The}\:\mathrm{material}\:\mathrm{used}\:\mathrm{in}\:\mathrm{insulation}\:\mathrm{has}\:\mathrm{thickness} \\ $$$$\mathrm{of}\:\mathrm{2}.\mathrm{1}\:\mathrm{mm}\:\mathrm{with}\:\mathrm{a}\:\mathrm{thermal}\:\mathrm{conductivity}\:\mathrm{of}\:\mathrm{0}.\mathrm{2}\:\mathrm{W}/\mathrm{Km}.\:\mathrm{the}\:\mathrm{material}\:\mathrm{used} \\ $$$$\mathrm{in}\:\mathrm{constructing}\:\mathrm{the}\:\mathrm{wire}\:\mathrm{has}\:\mathrm{a}\:\mathrm{resistivity}\:\mathrm{of}\:\mathrm{4}.\mathrm{2}\:×\:\mathrm{10}^{−\mathrm{7}} \Omega\mathrm{m}.\:\mathrm{assume}\:\mathrm{the}\: \\ $$$$\mathrm{the}\:\mathrm{materials}\:\mathrm{reach}\:\mathrm{steady}\:\mathrm{state}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{difference}\:\mathrm{in}\:\mathrm{temperature} \\ $$$$\mathrm{between}\:\mathrm{the}\:\mathrm{outer}\:\mathrm{suface}\:\mathrm{and}\:\mathrm{inner}\:\mathrm{surface}. \\ $$

Answered by ajfour last updated on 23/Jun/20

P=I^2 R=((I^2 ρl)/(πa^2 ))   R_T =∫(dr/(k(2πrl)))=(1/(2kπl))ln (b/a)  ΔT=PR_T =((I^2 ρl)/(πa^2 ))((1/(2kπl)))ln (b/a)      =(((36A^2 )(4.2×10^(−7) Ωm))/(2π^2 (2.1×10^(−3) m)^2 (0.2W/Km)))ln 2   ΔT  =((36×4.2(ln 2))/(2π^2 ×4.41×2)) K          = ((18(ln 2))/(2.1π^2 )) C^°  ≈ 0.602 C °.

$${P}={I}^{\mathrm{2}} {R}=\frac{{I}^{\mathrm{2}} \rho{l}}{\pi{a}^{\mathrm{2}} }\: \\ $$$${R}_{{T}} =\int\frac{{dr}}{{k}\left(\mathrm{2}\pi{rl}\right)}=\frac{\mathrm{1}}{\mathrm{2}{k}\pi{l}}\mathrm{ln}\:\frac{{b}}{{a}} \\ $$$$\Delta{T}={PR}_{{T}} =\frac{{I}^{\mathrm{2}} \rho{l}}{\pi{a}^{\mathrm{2}} }\left(\frac{\mathrm{1}}{\mathrm{2}{k}\pi{l}}\right)\mathrm{ln}\:\frac{{b}}{{a}} \\ $$$$\:\:\:\:=\frac{\left(\mathrm{36}{A}^{\mathrm{2}} \right)\left(\mathrm{4}.\mathrm{2}×\mathrm{10}^{−\mathrm{7}} \Omega{m}\right)}{\mathrm{2}\pi^{\mathrm{2}} \left(\mathrm{2}.\mathrm{1}×\mathrm{10}^{−\mathrm{3}} {m}\right)^{\mathrm{2}} \left(\mathrm{0}.\mathrm{2}{W}/{Km}\right)}\mathrm{ln}\:\mathrm{2} \\ $$$$\:\Delta{T}\:\:=\frac{\mathrm{36}×\mathrm{4}.\mathrm{2}\left(\mathrm{ln}\:\mathrm{2}\right)}{\mathrm{2}\pi^{\mathrm{2}} ×\mathrm{4}.\mathrm{41}×\mathrm{2}}\:{K} \\ $$$$\:\:\:\:\:\:\:\:=\:\frac{\mathrm{18}\left(\mathrm{ln}\:\mathrm{2}\right)}{\mathrm{2}.\mathrm{1}\pi^{\mathrm{2}} }\:{C}^{°} \:\approx\:\mathrm{0}.\mathrm{602}\:{C}\:°. \\ $$

Commented by Rio Michael last updated on 23/Jun/20

thanks sir, please you got any other   procedure than this??

$$\mathrm{thanks}\:\mathrm{sir},\:\mathrm{please}\:\mathrm{you}\:\mathrm{got}\:\mathrm{any}\:\mathrm{other}\: \\ $$$$\mathrm{procedure}\:\mathrm{than}\:\mathrm{this}??\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com