Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 99828 by mathmax by abdo last updated on 23/Jun/20

let A = (((2            1)),((1      2)) )  1) calculate A^n   2)determine cosA and sinA  3) find chA and shA

letA=(2112)1)calculateAn2)determinecosAandsinA3)findchAandshA

Commented by bachamohamed last updated on 23/Jun/20

    1)    A= (((2   1)),((1    2)) )    p_A (𝛌)=det(A−𝛌I_2 )=(𝛌−1)(𝛌−2)   donc  les valeurs propres sont  {_(𝛌_2 =2) ^(𝛌_1 =1)   E_𝛌_1  =<(−1.1)>      E_𝛌_2  =<(1.1)>    ou   les vecteurs propres sont {_(v_2 =(1.1)) ^(v_1 =(−1.1))   et  donc  ∃ p ∈M_(2x2) (R)    telle que  B=p^(−1) A.p  on a  id_E   (R^2 .(v_1 .v_2 ))→^(p  matrix de id_E ) (R^2 .(e_1 .e_2 ))   en deduire que  p= (((−1     1)),((  1      1)) )    et   p^(−1) = (((−(1/2)      (1/2))),((     (1/2)      (1/2))) )     B=p^(−1) Ap = (((1  0)),((0   3)) )    et B^n =(p^(−1) Ap)^n =(p^(−1) Ap)(p^(−1) Ap)......^(n fois) ......(p^(−1) Ap)=p^(−1) A^n .p     ⇒  A^n =p.B^n .p^(−1)                                                                 ⇒A^n =(1/2) ((((3^n +1)       3^n −1)),((3^n −1          3^n +1)) )

1)A=(2112)pA(λ)=det(AλI2)=(λ1)(λ2)donclesvaleurspropressont{λ2=2λ1=1Eλ1=<(1.1)>Eλ2=<(1.1)>oulesvecteurspropressont{v2=(1.1)v1=(1.1)etdoncpM2x2(R)tellequeB=p1A.ponaidE(R2.(v1.v2))pmatrixdeidE(R2.(e1.e2))endeduirequep=(1111)etp1=(12121212)B=p1Ap=(1003)etBn=(p1Ap)n=(p1Ap)(p1Ap)......nfois......(p1Ap)=p1An.pAn=p.Bn.p1An=12((3n+1)3n13n13n+1)

Commented by mathmax by abdo last updated on 23/Jun/20

thankx sir.

thankxsir.

Answered by mathmax by abdo last updated on 23/Jun/20

1) the caracteristic polynome is P_c (A) =det(A−xI)= determinant (((2−x        1)),((1          2−x)))  =(2−x)^2 −1 =(x−2)^2 −1 =(x−2−1)(x−2+1) =(x−3)(x−1) ⇒  ⇒λ_1 =1 and λ_2 =3   we have x^(n )  =p_c (x)q +u_n x+v_n  ⇒  1 =u_n  +v_n  and 3^n  =3u_n  +v_n  ⇒2u_n =3^n −1 ⇒u_n =((3^n −1)/2)  v_n =1−u_n =1−((3^n −1)/2) =((2−3^n +1)/2) =((3−3^n )/2)  we have A^n  =u_n  A +v_n I=((3^n −1)/2)  (((2              1)),((1               2)) )  +((3−3^n )/2) (((1         0)),((0           1)) )  = (((3^n −1              ((3^n −1)/2))),((((3^n −1)/2)             3^n −1)) ) + (((((3−3^n )/2)            0)),((0               ((3−3^n )/2))) )  = (((((2.3^n −2+3−3^n )/2)             ((3^n −1)/2))),((((3^n −1)/2)                         ((2.3^n −2+3−3^n )/2))) )  = (((((3^n  +1)/2)               ((3^n −1)/2))),((((3^n −1)/2)              ((3^n +1)/2))) )

1)thecaracteristicpolynomeisPc(A)=det(AxI)=|2x112x|=(2x)21=(x2)21=(x21)(x2+1)=(x3)(x1)λ1=1andλ2=3wehavexn=pc(x)q+unx+vn1=un+vnand3n=3un+vn2un=3n1un=3n12vn=1un=13n12=23n+12=33n2wehaveAn=unA+vnI=3n12(2112)+33n2(1001)=(3n13n123n123n1)+(33n20033n2)=(2.3n2+33n23n123n122.3n2+33n2)=(3n+123n123n123n+12)

Commented by mathmax by abdo last updated on 24/Jun/20

2) cos A =Σ_(n=0) ^∞  (((−1)^n  A^(2n) )/((2n)!)) =Σ_(n=0) ^∞  (((−1)^n )/(2(2n)!))  (((3^(2n)  +1              3^(2n) −1)),((3^(2n) −1               3^(2n) +1)) )  =(1/2)  (((Σ_(n=0) ^∞  (((−1)^n )/((2n)!))3^(2n)  +Σ_(n=0) ^∞ (((−1)^n )/((2n)!))             Σ_(n=0) ^∞  (((−1)^n  3^(2n) )/((2n)!))−Σ_(n=0) ^∞  (((−1)^n )/((2n)!)))),((.....                                                                                               ....)) )  =(1/2) (((cos(3)+cos(1)             cos3−cos(1))),((cos(3)−cos(1)             cos(3)+cos(1))) )  sinA =Σ_(n=0) ^∞  (((−1)^n  A^(2n+1) )/((2n+1)!))  =.....

2)cosA=n=0(1)nA2n(2n)!=n=0(1)n2(2n)!(32n+132n132n132n+1)=12(n=0(1)n(2n)!32n+n=0(1)n(2n)!n=0(1)n32n(2n)!n=0(1)n(2n)!.........)=12(cos(3)+cos(1)cos3cos(1)cos(3)cos(1)cos(3)+cos(1))sinA=n=0(1)nA2n+1(2n+1)!=.....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com