Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 99839 by mathmax by abdo last updated on 23/Jun/20

let x_0 =1 and x_(n+1) =ln(e^x_n  −x_n )  1) prove that x_n  →0  2)prove that Σ x_n  converges and ddyermine its sum

$$\mathrm{let}\:\mathrm{x}_{\mathrm{0}} =\mathrm{1}\:\mathrm{and}\:\mathrm{x}_{\mathrm{n}+\mathrm{1}} =\mathrm{ln}\left(\mathrm{e}^{\mathrm{x}_{\mathrm{n}} } −\mathrm{x}_{\mathrm{n}} \right) \\ $$$$\left.\mathrm{1}\right)\:\mathrm{prove}\:\mathrm{that}\:\mathrm{x}_{\mathrm{n}} \:\rightarrow\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\mathrm{prove}\:\mathrm{that}\:\Sigma\:\mathrm{x}_{\mathrm{n}} \:\mathrm{converges}\:\mathrm{and}\:\mathrm{ddyermine}\:\mathrm{its}\:\mathrm{sum} \\ $$

Commented by bachamohamed last updated on 23/Jun/20

do you have the solution ? spead the solution for us.

$$\boldsymbol{{do}}\:\boldsymbol{{you}}\:\boldsymbol{{have}}\:\boldsymbol{{the}}\:\boldsymbol{{solution}}\:?\:\boldsymbol{{spead}}\:\boldsymbol{{the}}\:\boldsymbol{{solution}}\:\boldsymbol{{for}}\:\boldsymbol{{us}}. \\ $$

Commented by abdomathmax last updated on 23/Jun/20

you must take a try sir first...

$$\mathrm{you}\:\mathrm{must}\:\mathrm{take}\:\mathrm{a}\:\mathrm{try}\:\mathrm{sir}\:\mathrm{first}... \\ $$

Commented by bachamohamed last updated on 23/Jun/20

yes i tried and did not succed   we await your anser thank you sir

$$\mathrm{yes}\:\mathrm{i}\:\mathrm{tried}\:\mathrm{and}\:\mathrm{did}\:\mathrm{not}\:\mathrm{succed}\: \\ $$$$\mathrm{we}\:\mathrm{await}\:\mathrm{your}\:\mathrm{anser}\:\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by mathmax by abdo last updated on 23/Jun/20

nevermind we are here for help...

$$\mathrm{nevermind}\:\mathrm{we}\:\mathrm{are}\:\mathrm{here}\:\mathrm{for}\:\mathrm{help}... \\ $$

Answered by maths mind last updated on 23/Jun/20

1)  shiw x_n  cv   let show x_n ≥0   we havef(x)=e^x −x−1 is   increasing for x≥0  1≥x_0 =1≥0  supose≥1 x_n ≥0⇒≥f(1)≥f(x_n )≥f(0)=0⇒e^x_n  −x_n ≥1⇒ln(e^x_n  −x_n )≥0  f(1)=e^1 −1−1≤1⇒x_(n+1) ≤1  ⇒1≥x_(n+1) ≥0⇒by induction ∀n∈N 1≥ x_n ≥0  x_(n+1) −x_n =ln(e^x_n  −x_n )−x_n =ln(e^x_n  −x_n )−ln(e^x_n  )  since e^x_n  −x_n ≤e^(xn) ⇒x_(n+1) ≤x_n   ⇒x_n   is bounded and deacrease ⇒cv   l=lim_(n→∞) X_n ⇒ln(e^l −l)=l⇒e^l −l=e^l ⇒l=0  x_(n+1) =ln(e^x_n  −x_n )  n→∞ x_n →0  e^x_n  =1+x_n +(((x_n )^2 )/2)+0(x_n ^2 )⇒e^(xn) −x_n =1+(x_n ^2 /2)  x_(n+1) =ln(1+(x_n ^2 /2)+o(x_n ^2 ))  =(x_n ^2 /2)+0(x_n ^2 )⇒∃c∈]0,1[  such  ⇒x_(n+1) ≤cx_n ^2 =(cx_n )x_n   since x_n →0⇒∃N ∀n≥N   x_n <(1/2)  ⇒x_(n+1) ≤(c/2)x_n ⇒x_n ≤((c/2))^(n−N) ,∀n≥N  ⇒Σx_n =Σ_(n≤N) x_n +Σ_(n>N) x_n   first finite 2nd by comparaison withe cv geoemtry serie  ⇒Σx_n   Cv  it Sum i worcking on it

$$\left.\mathrm{1}\right) \\ $$$${shiw}\:{x}_{{n}} \:{cv}\: \\ $$$${let}\:{show}\:{x}_{{n}} \geqslant\mathrm{0} \\ $$$$\:{we}\:{havef}\left({x}\right)={e}^{{x}} −{x}−\mathrm{1}\:{is}\:\:\:{increasing}\:{for}\:{x}\geqslant\mathrm{0} \\ $$$$\mathrm{1}\geqslant{x}_{\mathrm{0}} =\mathrm{1}\geqslant\mathrm{0} \\ $$$${supose}\geqslant\mathrm{1}\:{x}_{{n}} \geqslant\mathrm{0}\Rightarrow\geqslant{f}\left(\mathrm{1}\right)\geqslant{f}\left({x}_{{n}} \right)\geqslant{f}\left(\mathrm{0}\right)=\mathrm{0}\Rightarrow{e}^{{x}_{{n}} } −{x}_{{n}} \geqslant\mathrm{1}\Rightarrow{ln}\left({e}^{{x}_{{n}} } −{x}_{{n}} \right)\geqslant\mathrm{0} \\ $$$${f}\left(\mathrm{1}\right)={e}^{\mathrm{1}} −\mathrm{1}−\mathrm{1}\leqslant\mathrm{1}\Rightarrow{x}_{{n}+\mathrm{1}} \leqslant\mathrm{1} \\ $$$$\Rightarrow\mathrm{1}\geqslant{x}_{{n}+\mathrm{1}} \geqslant\mathrm{0}\Rightarrow{by}\:{induction}\:\forall{n}\in\mathbb{N}\:\mathrm{1}\geqslant\:{x}_{{n}} \geqslant\mathrm{0} \\ $$$${x}_{{n}+\mathrm{1}} −{x}_{{n}} ={ln}\left({e}^{{x}_{{n}} } −{x}_{{n}} \right)−{x}_{{n}} ={ln}\left({e}^{{x}_{{n}} } −{x}_{{n}} \right)−{ln}\left({e}^{{x}_{{n}} } \right) \\ $$$${since}\:{e}^{{x}_{{n}} } −{x}_{{n}} \leqslant{e}^{{xn}} \Rightarrow{x}_{{n}+\mathrm{1}} \leqslant{x}_{{n}} \\ $$$$\Rightarrow{x}_{{n}} \:\:{is}\:{bounded}\:{and}\:{deacrease}\:\Rightarrow{cv}\: \\ $$$${l}=\underset{{n}\rightarrow\infty} {\mathrm{lim}}{X}_{{n}} \Rightarrow{ln}\left({e}^{{l}} −{l}\right)={l}\Rightarrow{e}^{{l}} −{l}={e}^{{l}} \Rightarrow{l}=\mathrm{0} \\ $$$${x}_{{n}+\mathrm{1}} ={ln}\left({e}^{{x}_{{n}} } −{x}_{{n}} \right) \\ $$$${n}\rightarrow\infty\:{x}_{{n}} \rightarrow\mathrm{0} \\ $$$${e}^{{x}_{{n}} } =\mathrm{1}+{x}_{{n}} +\frac{\left({x}_{{n}} \right)^{\mathrm{2}} }{\mathrm{2}}+\mathrm{0}\left({x}_{{n}} ^{\mathrm{2}} \right)\Rightarrow{e}^{{xn}} −{x}_{{n}} =\mathrm{1}+\frac{{x}_{{n}} ^{\mathrm{2}} }{\mathrm{2}} \\ $$$${x}_{{n}+\mathrm{1}} ={ln}\left(\mathrm{1}+\frac{{x}_{{n}} ^{\mathrm{2}} }{\mathrm{2}}+{o}\left({x}_{{n}} ^{\mathrm{2}} \right)\right) \\ $$$$\left.=\frac{{x}_{{n}} ^{\mathrm{2}} }{\mathrm{2}}+\mathrm{0}\left({x}_{{n}} ^{\mathrm{2}} \right)\Rightarrow\exists{c}\in\right]\mathrm{0},\mathrm{1}\left[\:\:{such}\right. \\ $$$$\Rightarrow{x}_{{n}+\mathrm{1}} \leqslant{cx}_{{n}} ^{\mathrm{2}} =\left({cx}_{{n}} \right){x}_{{n}} \\ $$$${since}\:{x}_{{n}} \rightarrow\mathrm{0}\Rightarrow\exists{N}\:\forall{n}\geqslant{N}\:\:\:{x}_{{n}} <\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow{x}_{{n}+\mathrm{1}} \leqslant\frac{{c}}{\mathrm{2}}{x}_{{n}} \Rightarrow{x}_{{n}} \leqslant\left(\frac{{c}}{\mathrm{2}}\right)^{{n}−{N}} ,\forall{n}\geqslant{N} \\ $$$$\Rightarrow\Sigma{x}_{{n}} =\underset{{n}\leqslant{N}} {\sum}{x}_{{n}} +\underset{{n}>{N}} {\sum}{x}_{{n}} \\ $$$${first}\:{finite}\:\mathrm{2}{nd}\:{by}\:{comparaison}\:{withe}\:{cv}\:{geoemtry}\:{serie} \\ $$$$\Rightarrow\Sigma{x}_{{n}} \:\:{Cv} \\ $$$${it}\:{Sum}\:{i}\:{worcking}\:{on}\:{it} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by abdomathmax last updated on 23/Jun/20

thanks sir.

$$\mathrm{thanks}\:\mathrm{sir}. \\ $$

Answered by abdomathmax last updated on 23/Jun/20

2) let complete the solution we have  x_n →0 (n→∞) and e^x_(n+1)   =e^x_n  −x_n  ⇒  x_n =e^x_n  −e^x_(n+1)    let S_n =Σ_(k=1) ^n  x_k  ⇒  S_n =Σ_(k=0) ^n  (e^x_k  −e^x_(k+1)  ) =e^x_0  −e^x_1  +e^x_1  −e^x_2  +....  +e^x_n  −e^x_(n+1)   =e−e^x_(n+1)   →e−1 ⇒  Σ_(n=0) ^∞  x^n  =e−1

$$\left.\mathrm{2}\right)\:\mathrm{let}\:\mathrm{complete}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{we}\:\mathrm{have} \\ $$$$\mathrm{x}_{\mathrm{n}} \rightarrow\mathrm{0}\:\left(\mathrm{n}\rightarrow\infty\right)\:\mathrm{and}\:\mathrm{e}^{\mathrm{x}_{\mathrm{n}+\mathrm{1}} } \:=\mathrm{e}^{\mathrm{x}_{\mathrm{n}} } −\mathrm{x}_{\mathrm{n}} \:\Rightarrow \\ $$$$\mathrm{x}_{\mathrm{n}} =\mathrm{e}^{\mathrm{x}_{\mathrm{n}} } −\mathrm{e}^{\mathrm{x}_{\mathrm{n}+\mathrm{1}} } \:\:\mathrm{let}\:\mathrm{S}_{\mathrm{n}} =\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\mathrm{x}_{\mathrm{k}} \:\Rightarrow \\ $$$$\mathrm{S}_{\mathrm{n}} =\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{n}} \:\left(\mathrm{e}^{\mathrm{x}_{\mathrm{k}} } −\mathrm{e}^{\mathrm{x}_{\mathrm{k}+\mathrm{1}} } \right)\:=\mathrm{e}^{\mathrm{x}_{\mathrm{0}} } −\mathrm{e}^{\mathrm{x}_{\mathrm{1}} } +\mathrm{e}^{\mathrm{x}_{\mathrm{1}} } −\mathrm{e}^{\mathrm{x}_{\mathrm{2}} } +.... \\ $$$$+\mathrm{e}^{\mathrm{x}_{\mathrm{n}} } −\mathrm{e}^{\mathrm{x}_{\mathrm{n}+\mathrm{1}} } \:=\mathrm{e}−\mathrm{e}^{\mathrm{x}_{\mathrm{n}+\mathrm{1}} } \:\rightarrow\mathrm{e}−\mathrm{1}\:\Rightarrow \\ $$$$\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\mathrm{x}^{\mathrm{n}} \:=\mathrm{e}−\mathrm{1} \\ $$

Commented by abdomathmax last updated on 23/Jun/20

Σ_(n=0) ^∞  x_n =e−1

$$\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\mathrm{x}_{\mathrm{n}} =\mathrm{e}−\mathrm{1} \\ $$

Commented by bachamohamed last updated on 23/Jun/20

thank′s sir

$$\mathrm{thank}'\mathrm{s}\:\mathrm{sir}\: \\ $$

Commented by mathmax by abdo last updated on 23/Jun/20

you are welcome.

$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com