Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 99887 by mr W last updated on 23/Jun/20

Commented by mr W last updated on 23/Jun/20

Additional question:  Find the minimum initial velocity v  such that the small block can reach  the right end of the bigger block.

Additionalquestion:Findtheminimuminitialvelocityvsuchthatthesmallblockcanreachtherightendofthebiggerblock.

Commented by Dwaipayan Shikari last updated on 23/Jun/20

Time=((√((4Ml)/((M+m)μg))))  velocity_(min) =(1/2)(√(((M+m)μgl)/M))

Time=(4Ml(M+m)μg)velocitymin=12(M+m)μglM

Commented by Dwaipayan Shikari last updated on 23/Jun/20

Sir i have not done it properly. I am trying.

Sirihavenotdoneitproperly.Iamtrying.

Commented by Dwaipayan Shikari last updated on 23/Jun/20

Sir can you show your prove?

Commented by mr W last updated on 24/Jun/20

i got a solution which i think is  correct. see below.

igotasolutionwhichithinkiscorrect.seebelow.

Answered by ajfour last updated on 24/Jun/20

Commented by ajfour last updated on 24/Jun/20

frame of reference: bigger block  −μ(M+m)g+(μ/2)(mg)=−MA  mA=((μmg)/(2M))(2M+m)  f=((μmg)/2)  mA−f=ma  a=A−((μg)/2) = ((μg)/2){2+(m/M)−1}  a=((μg(M+m))/(2M))  l=(1/2)at^2    ⇒   t=(√((4Ml)/(μ(M+m)g)))  still thinking about v_(min) .....

frameofreference:biggerblockμ(M+m)g+μ2(mg)=MAmA=μmg2M(2M+m)f=μmg2mAf=maa=Aμg2=μg2{2+mM1}a=μg(M+m)2Ml=12at2t=4Mlμ(M+m)gstillthinkingaboutvmin.....

Answered by mr W last updated on 24/Jun/20

a, u=acc. & velocity of mass m  A, U=acc. & velocity of mass M  ma=−(μ/2)mg  ⇒a=−((μg)/2)  u=v−((μg)/2)t≥0  MA=((μmg)/2)−μ(M+m)g  ⇒A=−μg(1+(m/(2M)))  U=v−μg(1+(m/(2M)))t≥0    Δa=a−A=((μg)/2)(1+(m/M))  L=(1/2)(Δa)t^2   ⇒t=(√((2L)/(Δa)))=2(√(L/(μg(1+(m/M)))))   ...(i)  (i) is valid only if  U=v−(2+(m/M))(√((μgL)/(1+(m/M))))≥0  v≥v_2 =(2+(m/M))(√((μgL)/(1+(m/M))))  that means if v≥v_2 , the smaller block  reaches the right end of the bigger  block before the bigger block stops.  if v<v_2 , the bigger blocks stops before  the small block reaches the right end.  assume the small block moves the  distance L_1  on the big block at time t_1   as the bigger block stops. after this  moment the bigger block rests on the  the road and the small block moves  the remaining distance L−L_1 .  U_1 =v−(2+(m/M))(√((μgL_1 )/(1+(m/M))))=0  t_1 =2(√(L_1 /(μg(1+(m/M)))))  ⇒L_1 =(((1+(m/M))v^2 )/(μg(2+(m/M))^2 ))  ⇒t_1 =((2v)/(μg(2+(m/M))))  u_1 =v−((μg)/2)t_1 =v−(v/(2+(m/M)))=((1+(m/M))/(2+(m/M)))v  starting with this velocity the smaller  block should be able to move the  remaining distance L−L_1 .  (1/2)mu_1 ^2 ≥((μmg(L−L_1 ))/2)  u_1 ^2 ≥μg(L−L_1 )  (((1+(m/M))/(2+(m/M))))^2 v^2 ≥μg[L−(((1+(m/M))v^2 )/(μg(2+(m/M))^2 ))]  (((1+(m/M))^2 +1+(m/M))/((2+(m/M))^2 ))v^2 ≥μgL  ((1+(m/M))/(2+(m/M)))v^2 ≥μgL  ⇒v≥(√((1+(1/(1+(m/M))))μgL))  i.e. v_(min) =(√((1+(1/(1+(m/M))))μgL)) <v_2     summary:  if 0<v< (√((1+(1/(1+(m/M))))μgL)) ,  small block can′t reach the right end,  both blocks stoped moving before.    if (√((1+(1/(1+(m/M))))μgL)) ≤v<(2+(m/M))(√((μgL)/(1+(m/M))))  small block reaches the right end,  but the big block stoped moving before.    if v≥(2+(m/M))(√((μgL)/(1+(m/M))))  small block reaches the right end and  the big block is also in motion at this  moment.

a,u=acc.&velocityofmassmA,U=acc.&velocityofmassMma=μ2mga=μg2u=vμg2t0MA=μmg2μ(M+m)gA=μg(1+m2M)U=vμg(1+m2M)t0Δa=aA=μg2(1+mM)L=12(Δa)t2t=2LΔa=2Lμg(1+mM)...(i)(i)isvalidonlyifU=v(2+mM)μgL1+mM0vv2=(2+mM)μgL1+mMthatmeansifvv2,thesmallerblockreachestherightendofthebiggerblockbeforethebiggerblockstops.ifv<v2,thebiggerblocksstopsbeforethesmallblockreachestherightend.assumethesmallblockmovesthedistanceL1onthebigblockattimet1asthebiggerblockstops.afterthismomentthebiggerblockrestsonthetheroadandthesmallblockmovestheremainingdistanceLL1.U1=v(2+mM)μgL11+mM=0t1=2L1μg(1+mM)L1=(1+mM)v2μg(2+mM)2t1=2vμg(2+mM)u1=vμg2t1=vv2+mM=1+mM2+mMvstartingwiththisvelocitythesmallerblockshouldbeabletomovetheremainingdistanceLL1.12mu12μmg(LL1)2u12μg(LL1)(1+mM2+mM)2v2μg[L(1+mM)v2μg(2+mM)2](1+mM)2+1+mM(2+mM)2v2μgL1+mM2+mMv2μgLv(1+11+mM)μgLi.e.vmin=(1+11+mM)μgL<v2summary:if0<v<(1+11+mM)μgL,smallblockcantreachtherightend,bothblocksstopedmovingbefore.if(1+11+mM)μgLv<(2+mM)μgL1+mMsmallblockreachestherightend,butthebigblockstopedmovingbefore.ifv(2+mM)μgL1+mMsmallblockreachestherightendandthebigblockisalsoinmotionatthismoment.

Commented by ajfour last updated on 24/Jun/20

great work sir, i shall try to  follow, and i knew beforehand  it would go a bit lengthy..

greatworksir,ishalltrytofollow,andiknewbeforehanditwouldgoabitlengthy..

Terms of Service

Privacy Policy

Contact: info@tinkutara.com