Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 99905 by Rio Michael last updated on 23/Jun/20

Commented by Rio Michael last updated on 23/Jun/20

P and Q are two identical straight cables each of electrical resistance 20.0Ξ©.  placed 4.8 cm apart in air.   (a) find the current through each cable  (b) draw the magnetic field pattern in the region between P and Q  (c) determine the resultant magnetic flux density at the point R due to  P and Q only.

$$\mathrm{P}\:\mathrm{and}\:{Q}\:\mathrm{are}\:\mathrm{two}\:\mathrm{identical}\:\mathrm{straight}\:\mathrm{cables}\:\mathrm{each}\:\mathrm{of}\:\mathrm{electrical}\:\mathrm{resistance}\:\mathrm{20}.\mathrm{0}\Omega. \\ $$$$\mathrm{placed}\:\mathrm{4}.\mathrm{8}\:\mathrm{cm}\:\mathrm{apart}\:\mathrm{in}\:\mathrm{air}.\: \\ $$$$\left(\mathrm{a}\right)\:\mathrm{find}\:\mathrm{the}\:\mathrm{current}\:\mathrm{through}\:\mathrm{each}\:\mathrm{cable} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{draw}\:\mathrm{the}\:\mathrm{magnetic}\:\mathrm{field}\:\mathrm{pattern}\:\mathrm{in}\:\mathrm{the}\:\mathrm{region}\:\mathrm{between}\:{P}\:\mathrm{and}\:{Q} \\ $$$$\left(\mathrm{c}\right)\:\mathrm{determine}\:\mathrm{the}\:\mathrm{resultant}\:\mathrm{magnetic}\:\mathrm{flux}\:\mathrm{density}\:\mathrm{at}\:\mathrm{the}\:\mathrm{point}\:{R}\:\mathrm{due}\:\mathrm{to} \\ $$$$\mathrm{P}\:\mathrm{and}\:{Q}\:\mathrm{only}. \\ $$

Commented by smridha last updated on 24/Jun/20

current through each cables  I=((12)/(20))=0.6A(parallel combination)  the direcrion of current flow  through the each conductor(p and q)  is same so the resultant mangnetic  flux density is at R is    B=[((𝛍_0 I)/(2𝛑(1.8Γ—10^(βˆ’2) )))+((𝛍_0 I)/(2𝛑(3Γ—10^(βˆ’2) )))]T       =((4𝛑×10^(βˆ’7) Γ—0.6Γ—4.8Γ—10^(βˆ’2) )/(2𝛑×5.4Γ—10^(βˆ’4) ))  =1.0666Γ—10^(βˆ’5) T

$$\boldsymbol{{current}}\:\boldsymbol{{through}}\:\boldsymbol{{each}}\:\boldsymbol{{cables}} \\ $$$$\boldsymbol{{I}}=\frac{\mathrm{12}}{\mathrm{20}}=\mathrm{0}.\mathrm{6}{A}\left({parall}\boldsymbol{{el}}\:\boldsymbol{{combination}}\right) \\ $$$$\boldsymbol{{the}}\:\boldsymbol{{direcrion}}\:\boldsymbol{{of}}\:\boldsymbol{{current}}\:\boldsymbol{{flow}} \\ $$$$\boldsymbol{{through}}\:\boldsymbol{{the}}\:\boldsymbol{{each}}\:\boldsymbol{{conductor}}\left(\boldsymbol{{p}}\:\boldsymbol{{and}}\:\boldsymbol{{q}}\right) \\ $$$$\boldsymbol{{is}}\:\boldsymbol{{same}}\:\boldsymbol{{so}}\:\boldsymbol{{the}}\:\boldsymbol{{resultant}}\:\boldsymbol{{mangnetic}} \\ $$$$\boldsymbol{{flux}}\:\boldsymbol{{density}}\:\boldsymbol{{is}}\:\boldsymbol{{at}}\:\boldsymbol{{R}}\:{is} \\ $$$$\:\:\boldsymbol{{B}}=\left[\frac{\boldsymbol{\mu}_{\mathrm{0}} \boldsymbol{{I}}}{\mathrm{2}\boldsymbol{\pi}\left(\mathrm{1}.\mathrm{8}Γ—\mathrm{10}^{βˆ’\mathrm{2}} \right)}+\frac{\boldsymbol{\mu}_{\mathrm{0}} \boldsymbol{{I}}}{\mathrm{2}\boldsymbol{\pi}\left(\mathrm{3}Γ—\mathrm{10}^{βˆ’\mathrm{2}} \right)}\right]\boldsymbol{{T}} \\ $$$$\:\:\:\:\:=\frac{\mathrm{4}\boldsymbol{\pi}Γ—\mathrm{10}^{βˆ’\mathrm{7}} Γ—\mathrm{0}.\mathrm{6}Γ—\mathrm{4}.\mathrm{8}Γ—\mathrm{10}^{βˆ’\mathrm{2}} }{\mathrm{2}\boldsymbol{\pi}Γ—\mathrm{5}.\mathrm{4}Γ—\mathrm{10}^{βˆ’\mathrm{4}} } \\ $$$$=\mathrm{1}.\mathrm{0666}Γ—\mathrm{10}^{βˆ’\mathrm{5}} \boldsymbol{{T}} \\ $$$$ \\ $$

Commented by Rio Michael last updated on 24/Jun/20

Brilliant sir..thank you. sir if  iβ€²m to draw the magnetic pattern  will it be like this?    β†Ί       β†Ί

$$\mathrm{Brilliant}\:\mathrm{sir}..\mathrm{thank}\:\mathrm{you}.\:\mathrm{sir}\:\mathrm{if} \\ $$$$\mathrm{i}'\mathrm{m}\:\mathrm{to}\:\mathrm{draw}\:\mathrm{the}\:\mathrm{magnetic}\:\mathrm{pattern} \\ $$$$\mathrm{will}\:\mathrm{it}\:\mathrm{be}\:\mathrm{like}\:\mathrm{this}? \\ $$$$\:\:\circlearrowleft\:\:\:\:\:\:\:\circlearrowleft \\ $$

Commented by smridha last updated on 24/Jun/20

yeah ofcourse just simple  as Ampearβ€²s circuital Law...take  a closed loop around the wire  and apply the right hand thumb  rule..thatβ€²s easy for you..

$$\boldsymbol{{yeah}}\:\boldsymbol{{ofcourse}}\:\boldsymbol{{just}}\:\boldsymbol{{simple}} \\ $$$$\boldsymbol{{as}}\:\boldsymbol{{Ampear}}'\boldsymbol{{s}}\:\boldsymbol{{circuital}}\:\boldsymbol{{L}}{aw}...\boldsymbol{{take}} \\ $$$$\boldsymbol{{a}}\:\boldsymbol{{closed}}\:\boldsymbol{{loop}}\:\boldsymbol{{around}}\:\boldsymbol{{the}}\:\boldsymbol{{wire}} \\ $$$$\boldsymbol{{and}}\:\boldsymbol{{apply}}\:\boldsymbol{{the}}\:\boldsymbol{{right}}\:\boldsymbol{{hand}}\:\boldsymbol{{thumb}} \\ $$$$\boldsymbol{{rule}}..\boldsymbol{{that}}'{s}\:\boldsymbol{{eas}}{y}\:\boldsymbol{{for}}\:\boldsymbol{{you}}.. \\ $$

Commented by Rio Michael last updated on 24/Jun/20

thanks sir for the explanations

$$\mathrm{thanks}\:\mathrm{sir}\:\mathrm{for}\:\mathrm{the}\:\mathrm{explanations} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com