Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 99989 by bemath last updated on 24/Jun/20

(D^2 −4D+4)y = xe^(2x)

$$\left(\mathrm{D}^{\mathrm{2}} −\mathrm{4D}+\mathrm{4}\right)\mathrm{y}\:=\:{xe}^{\mathrm{2}{x}} \\ $$

Answered by bobhans last updated on 24/Jun/20

homogenous solution  β^2 −4β+4=0 , which has root β=2  hence y= e^(2x)  is a homogenous solution  Now we aplly reduction of order with this  solution . set y = e^(2x)  z , substituting this  into the original diff eq yields   e^(2x) (z′′+4z′+4z)−4e^(2x) (z′+2z)+4e^(2x)  z = xe^(2x)   which simplifies to z′′ = x  integrating this twice in succession yields  z = (1/6)x^3 +C_1 x+C_2   generall solution y = (C_1 x+C_2 )e^(2x)  + (1/6)x^3 e^(2x)

$$\mathrm{homogenous}\:\mathrm{solution} \\ $$$$\beta^{\mathrm{2}} −\mathrm{4}\beta+\mathrm{4}=\mathrm{0}\:,\:\mathrm{which}\:\mathrm{has}\:\mathrm{root}\:\beta=\mathrm{2} \\ $$$$\mathrm{hence}\:\mathrm{y}=\:\mathrm{e}^{\mathrm{2x}} \:\mathrm{is}\:\mathrm{a}\:\mathrm{homogenous}\:\mathrm{solution} \\ $$$$\mathrm{Now}\:\mathrm{we}\:\mathrm{aplly}\:\mathrm{reduction}\:\mathrm{of}\:\mathrm{order}\:\mathrm{with}\:\mathrm{this} \\ $$$$\mathrm{solution}\:.\:\mathrm{set}\:\mathrm{y}\:=\:\mathrm{e}^{\mathrm{2x}} \:\mathrm{z}\:,\:\mathrm{substituting}\:\mathrm{this} \\ $$$$\mathrm{into}\:\mathrm{the}\:\mathrm{original}\:\mathrm{diff}\:\mathrm{eq}\:\mathrm{yields}\: \\ $$$$\mathrm{e}^{\mathrm{2x}} \left(\mathrm{z}''+\mathrm{4z}'+\mathrm{4z}\right)−\mathrm{4e}^{\mathrm{2x}} \left(\mathrm{z}'+\mathrm{2z}\right)+\mathrm{4e}^{\mathrm{2x}} \:\mathrm{z}\:=\:{xe}^{\mathrm{2}{x}} \\ $$$$\mathrm{which}\:\mathrm{simplifies}\:\mathrm{to}\:\mathrm{z}''\:=\:{x} \\ $$$${integrating}\:{this}\:{twice}\:{in}\:{succession}\:{yields} \\ $$$$\mathrm{z}\:=\:\frac{\mathrm{1}}{\mathrm{6}}{x}^{\mathrm{3}} +{C}_{\mathrm{1}} {x}+{C}_{\mathrm{2}} \\ $$$$\mathrm{generall}\:\mathrm{solution}\:\mathrm{y}\:=\:\left(\mathrm{C}_{\mathrm{1}} {x}+{C}_{\mathrm{2}} \right)\mathrm{e}^{\mathrm{2x}} \:+\:\frac{\mathrm{1}}{\mathrm{6}}{x}^{\mathrm{3}} {e}^{\mathrm{2}{x}} \\ $$

Commented by bemath last updated on 24/Jun/20

great...thank much

$$\mathrm{great}...\mathrm{thank}\:\mathrm{much} \\ $$

Answered by mathmax by abdo last updated on 24/Jun/20

y^(′′) −4y^′  +4y =xe^(2x)   (he)→r^2 −4r +4 =0 ⇒(r−2)^2  =0⇒r =2 ⇒y_h =(ax+b)e^(2x)   =axe^(2x)  +be^(2x)  =au_1  +bu_2   W(u_1  ,u_2 ) = determinant (((xe^(2x)              e^(2x) )),(((2x+1)e^(2x)   2e^(2x) )))=2x e^(4x) −(2x+1)e^(4x)  =−e^(4x)   W_1 = determinant (((0          e^(2x) )),((xe^(2x)      2e^(2x) )))=−xe^(4x)   W_2 = determinant (((xe^(2x)                         0)),(((2x+1)e^(2x)      xe^(2x) )))=x^2  e^(4x)   v_1 =∫ (w_1 /w)dx =∫  ((−xe^(4x) )/(−e^(4x) ))dx =∫ xdx =(x^2 /2)  v_2 =∫ (w_2 /w)dx =∫  ((x^2  e^(4x) )/(−e^(4x) ))dx =−∫ x^(2 ) dx =−(x^3 /3)  y_p =u_1 v_1  +u_2 v_2 =xe^(2x) ((x^2 /2))+e^(2x) (−(x^3 /3)) =((x^3 /2)−(x^3 /3))e^(2x)  =(x^3 /6) e^(2x)  ⇒  the general solution is y =y_h  +y_p =(ax+b)e^(2x)  +(x^3 /6)e^(2x)

$$\mathrm{y}^{''} −\mathrm{4y}^{'} \:+\mathrm{4y}\:=\mathrm{xe}^{\mathrm{2x}} \\ $$$$\left(\mathrm{he}\right)\rightarrow\mathrm{r}^{\mathrm{2}} −\mathrm{4r}\:+\mathrm{4}\:=\mathrm{0}\:\Rightarrow\left(\mathrm{r}−\mathrm{2}\right)^{\mathrm{2}} \:=\mathrm{0}\Rightarrow\mathrm{r}\:=\mathrm{2}\:\Rightarrow\mathrm{y}_{\mathrm{h}} =\left(\mathrm{ax}+\mathrm{b}\right)\mathrm{e}^{\mathrm{2x}} \\ $$$$=\mathrm{axe}^{\mathrm{2x}} \:+\mathrm{be}^{\mathrm{2x}} \:=\mathrm{au}_{\mathrm{1}} \:+\mathrm{bu}_{\mathrm{2}} \\ $$$$\mathrm{W}\left(\mathrm{u}_{\mathrm{1}} \:,\mathrm{u}_{\mathrm{2}} \right)\:=\begin{vmatrix}{\mathrm{xe}^{\mathrm{2x}} \:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{e}^{\mathrm{2x}} }\\{\left(\mathrm{2x}+\mathrm{1}\right)\mathrm{e}^{\mathrm{2x}} \:\:\mathrm{2e}^{\mathrm{2x}} }\end{vmatrix}=\mathrm{2x}\:\mathrm{e}^{\mathrm{4x}} −\left(\mathrm{2x}+\mathrm{1}\right)\mathrm{e}^{\mathrm{4x}} \:=−\mathrm{e}^{\mathrm{4x}} \\ $$$$\mathrm{W}_{\mathrm{1}} =\begin{vmatrix}{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\mathrm{e}^{\mathrm{2x}} }\\{\mathrm{xe}^{\mathrm{2x}} \:\:\:\:\:\mathrm{2e}^{\mathrm{2x}} }\end{vmatrix}=−\mathrm{xe}^{\mathrm{4x}} \\ $$$$\mathrm{W}_{\mathrm{2}} =\begin{vmatrix}{\mathrm{xe}^{\mathrm{2x}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}}\\{\left(\mathrm{2x}+\mathrm{1}\right)\mathrm{e}^{\mathrm{2x}} \:\:\:\:\:\mathrm{xe}^{\mathrm{2x}} }\end{vmatrix}=\mathrm{x}^{\mathrm{2}} \:\mathrm{e}^{\mathrm{4x}} \\ $$$$\mathrm{v}_{\mathrm{1}} =\int\:\frac{\mathrm{w}_{\mathrm{1}} }{\mathrm{w}}\mathrm{dx}\:=\int\:\:\frac{−\mathrm{xe}^{\mathrm{4x}} }{−\mathrm{e}^{\mathrm{4x}} }\mathrm{dx}\:=\int\:\mathrm{xdx}\:=\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\mathrm{v}_{\mathrm{2}} =\int\:\frac{\mathrm{w}_{\mathrm{2}} }{\mathrm{w}}\mathrm{dx}\:=\int\:\:\frac{\mathrm{x}^{\mathrm{2}} \:\mathrm{e}^{\mathrm{4x}} }{−\mathrm{e}^{\mathrm{4x}} }\mathrm{dx}\:=−\int\:\mathrm{x}^{\mathrm{2}\:} \mathrm{dx}\:=−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}} \\ $$$$\mathrm{y}_{\mathrm{p}} =\mathrm{u}_{\mathrm{1}} \mathrm{v}_{\mathrm{1}} \:+\mathrm{u}_{\mathrm{2}} \mathrm{v}_{\mathrm{2}} =\mathrm{xe}^{\mathrm{2x}} \left(\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}\right)+\mathrm{e}^{\mathrm{2x}} \left(−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}\right)\:=\left(\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{2}}−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}\right)\mathrm{e}^{\mathrm{2x}} \:=\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{6}}\:\mathrm{e}^{\mathrm{2x}} \:\Rightarrow \\ $$$$\mathrm{the}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{is}\:\mathrm{y}\:=\mathrm{y}_{\mathrm{h}} \:+\mathrm{y}_{\mathrm{p}} =\left(\mathrm{ax}+\mathrm{b}\right)\mathrm{e}^{\mathrm{2x}} \:+\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{6}}\mathrm{e}^{\mathrm{2x}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com