Question and Answers Forum

All Questions      Topic List

Matrices and Determinants Questions

Previous in All Question      Next in All Question      

Previous in Matrices and Determinants      Next in Matrices and Determinants      

Question Number 11035 by suci last updated on 08/Mar/17

A= [(1,(−1)),((−4),(−2)) ]  A^(2016) =.....?

A=[1142]A2016=.....?

Answered by diofanto last updated on 19/Jul/17

Finding the eigenvalues of A:   determinant (((1−λ),(−1)),((−4),(−2−λ))) = 0  (1−λ)(−2−λ) − 4 = 0  λ^2  + λ − 6 = 0  λ_1  = 2, λ_2  = −3  Finding an eigenvector for each eigenvalue:  Ax = λ_1 x ⇔ (A−λ_1 I)x = 0  ⇔  [((−1),(−1)),((−4),(−4)) ] [(x_1 ),(x_2 ) ] =  [(0),(0) ]   ⇔ x_1  = −x_2 , e.g.  [((−1)),(1) ]  Ay = λ_2 y ⇔ (A−λ_2 I)y = 0  ⇔  [(4,(−1)),((−4),1) ] [(y_1 ),(y_2 ) ] =  [(0),(0) ]   ⇔ y_1  = y_2 /4, e.g.  [(1),(4) ]  Diagonalizing:  A =  [((−1),1),(1,4) ] [(2,0),(0,(−3)) ] [((−1),1),(1,4) ]^(−1)   Finding  [((−1),1),(1,4) ]^(−1) :   (((−1),1,1,0),(1,4,0,1) ) ∼  (((−1),1,1,0),(0,5,1,1) )  ∼  (((−1),0,(4/5),(−1/5)),(0,5,1,1) ) ∼  ((1,0,(−4/5),(1/5)),(0,1,(1/5),(1/5)) )  ⇔  [((−1),1),(1,4) ]^(−1)  =  [((−4/5),(1/5)),((1/5),(1/5)) ]  A^(2016)  =  [((−1),1),(1,4) ] [(2^(2016) ,0),(0,((−3)^(2016) )) ] [((−4/5),(1/5)),((1/5),(1/5)) ]  …

FindingtheeigenvaluesofA:|1λ142λ|=0(1λ)(2λ)4=0λ2+λ6=0λ1=2,λ2=3Findinganeigenvectorforeacheigenvalue:Ax=λ1x(Aλ1I)x=0[1144][x1x2]=[00]x1=x2,e.g.[11]Ay=λ2y(Aλ2I)y=0[4141][y1y2]=[00]y1=y2/4,e.g.[14]Diagonalizing:A=[1114][2003][1114]1Finding[1114]1:(11101401)(11100511)(104/51/50511)(104/51/5011/51/5)[1114]1=[4/51/51/51/5]A2016=[1114][2201600(3)2016][4/51/51/51/5]

Terms of Service

Privacy Policy

Contact: info@tinkutara.com