Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 198496 by mnjuly1970 last updated on 21/Oct/23

           A nice  series    If ,  Ω = Σ_(n=2) ^∞  (( 1)/(n^( 2)  +n −1)) =(( π tan( aπ ))/( b))       ⇒ find the value of   (b/a) = ?

AniceseriesIf,Ω=n=21n2+n1=πtan(aπ)bfindthevalueofba=?

Answered by mr W last updated on 21/Oct/23

Ω=Σ_(n=2) ^∞ (1/(n^2 +n−1))=Σ_(n=1) ^∞ (1/(n^2 +n−1))−1  Σ_(n=1) ^∞ (1/(n^2 +n−1))  =Σ_(n=1) ^∞ (1/((n−p)(n−q)))  with p, q=((−1±(√5))/2) and p+q=−1, pq=−1  =(1/(p−q))Σ_(n=1) ^∞ ((1/(n−p))−(1/(n−q)))  =(1/(p−q))[ψ(1−q)−ψ(1−p)]  =(1/(p−q))[ψ(1+1+p)−ψ(1−p)]  =(1/(p−q))[ψ(1+p)+(1/(1+p))−ψ(1−p)]  =(1/(q−p))[ψ(p)+(1/p)+(1/(1+p))−ψ(p)−π cot pπ]  =(1/(p−q))[(1/p)+(1/(1+p))−π cot pπ]  =(1/(p−q))[(1/p)−(1/q)−π cot pπ]  =(1/(p−q))[((q−p)/(pq))−π cot pπ]  =−(1/(pq))−(π/(p−q)) cot pπ  =1−(π/( (√5))) cot (((−1+(√5))π)/2)  =1+(π/( (√5))) cot ((π/2)−(((√5)π)/2))  =1+(π/( (√5))) tan (((√5)π)/2)  Ω=1+(π/( (√5))) tan (((√5)π)/2)−1  Ω=(π/( (√5))) tan (((√5)π)/2)=((πtan (aπ))/b)  ⇒a=((√5)/2), b=(√5) ⇒(b/a)=2

Ω=n=21n2+n1=n=11n2+n11n=11n2+n1=n=11(np)(nq)withp,q=1±52andp+q=1,pq=1=1pqn=1(1np1nq)=1pq[ψ(1q)ψ(1p)]=1pq[ψ(1+1+p)ψ(1p)]=1pq[ψ(1+p)+11+pψ(1p)]=1qp[ψ(p)+1p+11+pψ(p)πcotpπ]=1pq[1p+11+pπcotpπ]=1pq[1p1qπcotpπ]=1pq[qppqπcotpπ]=1pqπpqcotpπ=1π5cot(1+5)π2=1+π5cot(π25π2)=1+π5tan5π2Ω=1+π5tan5π21Ω=π5tan5π2=πtan(aπ)ba=52,b=5ba=2

Commented by mnjuly1970 last updated on 21/Oct/23

so nice solution sir W    Bravo

sonicesolutionsirWBravo

Terms of Service

Privacy Policy

Contact: info@tinkutara.com