Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 22145 by Tinkutara last updated on 11/Oct/17

A particle P is moving on a circle under  the action of only one force acting  always towards fixed point O on the  circumference. Find ratio of (d^2 φ/dt^2 ) and  ((dφ/dt))^2 .

AparticlePismovingonacircleundertheactionofonlyoneforceactingalwaystowardsfixedpointOonthecircumference.Findratioofd2ϕdt2and(dϕdt)2.

Commented by Tinkutara last updated on 11/Oct/17

Commented by sma3l2996 last updated on 12/Oct/17

we have  F^→ =ma^→ ⇔a^→ =−(F/m)u^→  ...(i)  and  OP^(→) =2Rcos(φ)u^→       so v^→ (P)=((dOP^(→) )/dt)=2R[−φ^. sin(φ)u^→ +φ^. cos(φ)k^→ ]=2Rφ^. (−sinφu^→ +cosφk^→ )  and   a^→ (P)=(dv^→ /dt)=2R[φ^(..) (−sinφu^→ +cosφk^→ )+φ^. (−φ^. cosφu^→ −φ^. sinφk^→ −φ^. sinφk^→ −φ^. cosφu^→ )]  so : a^→ =2R[(−φ^(..) sinφ−2φ^. ^2 cosφ)u^→ +(φ^(..) cosφ−2φ^. ^2 sinφ)k^→ ] ...(ii)  we have (i)=(ii)  so   2R(−φ^(..) sinφ−2φ^. ^2 cosφ)=((−F)/m)  and  φ^(..) cosφ−2φ^. ^2 sinφ=0  so   φ^(..) cosφ=2φ^. ^2 sinφ ⇔φ^(..) =2φ^. ^2 tan(φ) ...(3i)  φ^(..) sinφ+2φ^. ^2 cosφ=(F/(2Rm)) ...(4i)  (3i)→(4i)⇒ 2φ^. ^2 tan(φ)sin(φ)+2φ^. ^2 cosφ=(F/(2Rm))  2φ^. ^2 cosφ(((tan(φ)sinφ)/(cosφ))+1)=(F/(2Rm))  2φ^. ^2 cosφ(tan^2 φ+1)=(F/(2Rm))  ((dφ/dt))^2 =φ^. ^2 =(F/(4Rm))cosφ  and φ^(..) =2φ^. ^2 tanφ=2((F/(4Rm))cosφ)tanφ  so :  (d^2 φ/dt^2 )=φ^(..) =(F/(2Rm))sinφ

wehaveF=maa=Fmu...(i)andOP=2Rcos(ϕ)usov(P)=dOPdt=2R[ϕ.sin(ϕ)u+ϕ.cos(ϕ)k]=2Rϕ.(sinϕu+cosϕk)anda(P)=dvdt=2R[ϕ..(sinϕu+cosϕk)+ϕ.(ϕ.cosϕuϕ.sinϕkϕ.sinϕkϕ.cosϕu)]so:a=2R[(ϕ..sinϕ2ϕ.2cosϕ)u+(ϕ..cosϕ2ϕ.2sinϕ)k]...(ii)wehave(i)=(ii)so2R(ϕ..sinϕ2ϕ.2cosϕ)=Fmandϕ..cosϕ2ϕ.2sinϕ=0soϕ..cosϕ=2ϕ.2sinϕϕ..=2ϕ.2tan(ϕ)...(3i)ϕ..sinϕ+2ϕ.2cosϕ=F2Rm...(4i)(3i)(4i)2ϕ.2tan(ϕ)sin(ϕ)+2ϕ.2cosϕ=F2Rm2ϕ.2cosϕ(tan(ϕ)sinϕcosϕ+1)=F2Rm2ϕ.2cosϕ(tan2ϕ+1)=F2Rm(dϕdt)2=ϕ.2=F4Rmcosϕandϕ..=2ϕ.2tanϕ=2(F4Rmcosϕ)tanϕso:d2ϕdt2=ϕ..=F2Rmsinϕ

Commented by sma3l2996 last updated on 12/Oct/17

Answered by ajfour last updated on 12/Oct/17

Alternate solution:  let the ∠ at C be θ.        θ=2φ  ⇒  ω=(dθ/dt)=2(dφ/dt)  ..(i)      ((dφ/dt))^2 =(ω^2 /4)    ...(a)  α=(dω/dt) =2(d^2 φ/dt^2 )   ⇒   (d^2 φ/dt^2 )=(α/2)    ...(b)  (b)÷(a) will give  ((d^2 φ/dt^2 )/((dφ/dt)^2 )) =((α/2)/(ω^2 /4)) =((2α)/ω^2 )                     =((2m(αr))/(m(ω^2 r))) =((2ma_T )/(ma_r ))       =((2Fsin φ)/(Fcos φ)) = 2tan 𝛗 .

Alternatesolution:lettheatCbeθ.θ=2ϕω=dθdt=2dϕdt..(i)(dϕdt)2=ω24...(a)α=dωdt=2d2ϕdt2d2ϕdt2=α2...(b)(b)÷(a)willgived2ϕ/dt2(dϕ/dt)2=α/2ω2/4=2αω2=2m(αr)m(ω2r)=2maTmar=2FsinϕFcosϕ=2tanϕ.

Commented by Tinkutara last updated on 12/Oct/17

Thank you very much Sir!

ThankyouverymuchSir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com