All Questions Topic List
Geometry Questions
Previous in All Question Next in All Question
Previous in Geometry Next in Geometry
Question Number 6169 by sanusihammed last updated on 17/Jun/16
AtelephonewirehangsfromtwopointsP,Q60mapartP,Qareonthesamelevel.themidpointofthetelephonewireis3mbelowthelevelofP,Q.Assumingthatithangsinformofacurve,finditequation.pleasehelp.thanksforyourtime.
Answered by Yozzii last updated on 17/Jun/16
Letcurvebequadraticwhere0⩽x⩽60f(x)=ax2+bx,a>0,P(0,0),Q(60,0)(P&Qlieonx−axis)⇒f(60)=0or3600a+60b=0b=−60a........(i)Atx=0.5∣PQ∣=30,f′(30)=0ifweassumeauniformwireliesbetweenP&Q.∴2a(30)+b=0⇒b=−60a(nonewinformationbasedonquadraticassumption.)∴Atx=30,f(30)=−3.∴900a+30b=−3300a+10b=−1..........(ii)From(i),in(ii)300a+10(−60a)=−1−300a=−1⇒a=1300⇒b=−60300=−15.∴f(x)=1300x2−15x(0⩽x⩽60)−−−−−−−−−−−−−−−−−−−−−−−−Ingeneral,inx−yCartesianco−ordinates,wecanletP(a,b)andQ(a+60,b)wherea,b∈R.Thismeansthatonecanchooseanyarbitraryplaceinthex−yplanetoputthiscurveforx∈[a,a+60].Assumingthewireisuniform,theexampleaboveindicatesthatthequadraticcurveisasuitablemodel.Letf(x)=cx2+dx(c>0).Atx=a,f(x)=b∴b=ca2+daord=b−ca2a(a≠0).......(i)Atx=a+60,f(a+60)=b∴c(a+60)2+d(a+60)=bca2+c(120a+3600)+da+60d=b120c(a+30)+60d=02c(a+30)+d=02ca+60c+ba−ca=0(from(i))ca+60c=−bac=−ba(a+60)⇒d=ba−a×−ba(a+60)d=ba(1+aa+60)=b(a+60+a)a(a+60)d=2b(a+30)a(a+60)Sincec>0⇒−60<a<0&b>0orb<0&a>0orb<0&a<−60.∴f(x)=bxa(a+60)(−x+2a+60)Atx=a+30,f(a+30)=b(a+30)(−a−30+2a+60)a(a+60)f(a+30)=b(a+30)2a(a+60)f(a+30)−b=900ba(a+60)Butf(a+30)−f(a)=−3.⇒300b=−a(a+60)b=−a(a+60)300.∴f(x)=−a(a+60)300×xa(a+60)(−x+2a+60)f(x)=x(x−2a−60)300=1300x2−x(a+30)150f(a)=a(a−2a−60)300=−a(a+60)300f(a+60)=(a+60)(−a)300=bf′(x)=x−a−30150⇒atmidpoint,f′(x)=0orx=a+30.Wemaychoosetoshiftthiscurvebyanamounthverticallysothatingeneralf(x)=1300x2−x(a+30)150+h(a⩽x⩽a+60,a,h∈R).a=0andh=0⇒f(x)=1300x2−15xaswasfound.
Commented by sanusihammed last updated on 17/Jun/16
Thankssomuch
Terms of Service
Privacy Policy
Contact: info@tinkutara.com