Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 18092 by Tinkutara last updated on 15/Jul/17

A value of θ satisfying  4cos^2 θsinθ − 2sin^2 θ = 3sinθ is  (1) ((9π)/(10))  (2) (π/(10))  (3) −((13π)/(10))  (4) −((17π)/(10))

Avalueofθsatisfying4cos2θsinθ2sin2θ=3sinθis(1)9π10(2)π10(3)13π10(4)17π10

Answered by ajfour last updated on 15/Jul/17

(sin θ)(4cos^2 θ−2sin θ−3)=0  sin θ=0  , or        4−4sin^2 θ−2sin θ−3=0       sin^2 θ+((sin θ)/2)=(1/4)   ⇒       (sin θ+(1/4))^2 =(1/4)+(1/(16))=(5/(16))        sin θ=((−1±(√5))/4)           θ=(π/(10)), −((3π)/(10)), and so on..  Among the options, (1) and (2) with    θ=(π/(10)) , ((9π)/(10))  are the correct options.

(sinθ)(4cos2θ2sinθ3)=0sinθ=0,or44sin2θ2sinθ3=0sin2θ+sinθ2=14(sinθ+14)2=14+116=516sinθ=1±54θ=π10,3π10,andsoon..Amongtheoptions,(1)and(2)withθ=π10,9π10arethecorrectoptions.

Commented by Tinkutara last updated on 15/Jul/17

Thanks Sir!

ThanksSir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com