Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 147287 by mnjuly1970 last updated on 19/Jul/21

               ...Advanced  Calculus...          Calculate ::     { ((  i ::      I := ∫_0 ^( 1) ln(x).ln(1+x) dx)),((  ii ::     J := ∫_0 ^( 1) Li_( 2) ( 1− x^( 2) ) =?)) :}            Note::   Li_2  (x) = Σ_(n=1) ^( ∞)  (x^( n) /n^( 2) )    ........ ■                                                           .... m.n....

...AdvancedCalculus...Calculate::{i::I:=01ln(x).ln(1+x)dxii::J:=01Li2(1x2)=?Note::Li2(x)=n=1xnn2............m.n....

Answered by mindispower last updated on 19/Jul/21

I=[(xln(x)−x)ln(1+x)]_0 ^1 −∫_0 ^1 ((xln(x))/(1+x))−(x/(1+x))dx  =−ln(2)−∫_0 ^1 (((x+1−1)ln(x))/(1+x))−1+(1/(1+x))dx  =−ln(2)−∫_0 ^1 ln(x)dx+∫_0 ^1 ((ln(x))/(1+x))dx+∫dx−∫(dx/(1+x))  =−ln(2)+1−∫_0 ^1 ((ln(1+x))/x)dx+1−ln(2)  =−ln(2)−∫_0 ^1 ((ln(1−(−x)))/(−x))d(−x)+2  =ln(2)+[Li_2 (−x)]_0 ^1 =−2ln(2)+Li_2 (−1)+2=−ln(4)−(π^2 /(12))+2  J=[xli_2 (1−x^2 )]−∫_0 ^1 ((2x^2 ln(x^2 ))/(1−x^2 ))  =−4∫_0 ^1 ((ln(x))/(1−x^2 ))dx+4∫_0 ^1 ln(x)dx  =−2∫_0 ^1 ((ln(x))/(1−x))dx−2∫_0 ^1 ((ln(x))/(1+x))dx−4  =2Li_2 (1−x)]_0 ^1 +2∫_0 ^1 ((ln(1+x))/x)dx−4  =(π^2 /3)−2Li(−1)−4  =(π^2 /3)+(π^2 /6)−4=(π^2 /2)−4=(1/2)(π^2 −8)

I=[(xln(x)x)ln(1+x)]0101xln(x)1+xx1+xdx=ln(2)01(x+11)ln(x)1+x1+11+xdx=ln(2)01ln(x)dx+01ln(x)1+xdx+dxdx1+x=ln(2)+101ln(1+x)xdx+1ln(2)=ln(2)01ln(1(x))xd(x)+2=ln(2)+[Li2(x)]01=2ln(2)+Li2(1)+2=ln(4)π212+2J=[xli2(1x2)]012x2ln(x2)1x2=401ln(x)1x2dx+401ln(x)dx=201ln(x)1xdx201ln(x)1+xdx4=2Li2(1x)]01+201ln(1+x)xdx4=π232Li(1)4=π23+π264=π224=12(π28)

Answered by mathmax by abdo last updated on 19/Jul/21

Υ=∫_0 ^1 ln(x)ln(1+x)dx  we have (d/dx)ln(1+x)=(1/(1+x))=Σ_(n=0) ^∞ (−1)^n x^n   ⇒ln(1+x)=Σ_(n=0) ^∞  (((−1)^n x^(n+1) )/(n+1))=Σ_(n=1) ^∞  (((−1)^(n−1) x^n )/n)  ⇒Υ=∫_0 ^1 (Σ_(n=1) ^∞  (((−1)^(n−1) x^n )/n))ln(x)dx  =Σ_(n=1) ^∞  (((−1)^(n−1) )/n)∫_0 ^1  x^n ln(x)dx  U_n =∫_0 ^1  x^n ln(x)dx=[(x^(n+1) /(n+1))ln(x)]_0 ^1 −∫_0 ^1 (x^n /(n+1))dx  =−(1/((n+1)^2 )) ⇒Υ=−Σ_(n=1) ^∞  (((−1)^(n−1) )/(n(n+1)^2 ))=Σ_(n=1) ^∞  (((−1)^n )/(n(n+1)^2 ))  (1/(x(x+1)^2 ))=(a/x)+(b/(x+1))+(c/((x+1)^2 ))=h(x)  a=1 ,c=−1   ,lim_(x→+∞) xh(x)=0=a+b ⇒b=−1 ⇒  h(x)=(1/x)−(1/(x+1))−(1/((x+1)^2 )) ⇒Υ=Σ_(n.1) ^∞  (((−1)^n )/n)−Σ_(n=1) ^∞  (((−1)^n )/(n+1))  −Σ_(n=1) ^∞  (((−1)^n )/((n+1)^2 ))  we have  Σ_(n=1) ^∞  (((−1)^n )/n)=−ln2  Σ_(n=1) ^∞  (((−1)^n )/(n+1))=Σ_(n=2) ^∞  (((−1)^(n−1) )/n)=ln(2)−1  Σ_(n=1) ^∞  (((−1)^n )/((n+1)^2 ))=Σ_(n=2) ^∞  (((−1)^(n−1) )/n^2 )=−Σ_(n=2) ^∞  (((−1)^n )/n^2 )  =−(Σ_(n=1) ^∞  (((−1)^n )/n^2 )+1)=−(2^(1−2) −1)ξ(2)−1=(1/2)(π^2 /6)−1=(π^2 /(12))−1  ⇒Υ=−ln2−ln2+1−(π^2 /(12))+1 =2−2ln2−(π^2 /(12))

Υ=01ln(x)ln(1+x)dxwehaveddxln(1+x)=11+x=n=0(1)nxnln(1+x)=n=0(1)nxn+1n+1=n=1(1)n1xnnΥ=01(n=1(1)n1xnn)ln(x)dx=n=1(1)n1n01xnln(x)dxUn=01xnln(x)dx=[xn+1n+1ln(x)]0101xnn+1dx=1(n+1)2Υ=n=1(1)n1n(n+1)2=n=1(1)nn(n+1)21x(x+1)2=ax+bx+1+c(x+1)2=h(x)a=1,c=1,limx+xh(x)=0=a+bb=1h(x)=1x1x+11(x+1)2Υ=n.1(1)nnn=1(1)nn+1n=1(1)n(n+1)2wehaven=1(1)nn=ln2n=1(1)nn+1=n=2(1)n1n=ln(2)1n=1(1)n(n+1)2=n=2(1)n1n2=n=2(1)nn2=(n=1(1)nn2+1)=(2121)ξ(2)1=12π261=π2121Υ=ln2ln2+1π212+1=22ln2π212

Terms of Service

Privacy Policy

Contact: info@tinkutara.com