All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 147287 by mnjuly1970 last updated on 19/Jul/21
...AdvancedCalculus...Calculate::{i::I:=∫01ln(x).ln(1+x)dxii::J:=∫01Li2(1−x2)=?Note::Li2(x)=∑∞n=1xnn2........◼....m.n....
Answered by mindispower last updated on 19/Jul/21
I=[(xln(x)−x)ln(1+x)]01−∫01xln(x)1+x−x1+xdx=−ln(2)−∫01(x+1−1)ln(x)1+x−1+11+xdx=−ln(2)−∫01ln(x)dx+∫01ln(x)1+xdx+∫dx−∫dx1+x=−ln(2)+1−∫01ln(1+x)xdx+1−ln(2)=−ln(2)−∫01ln(1−(−x))−xd(−x)+2=ln(2)+[Li2(−x)]01=−2ln(2)+Li2(−1)+2=−ln(4)−π212+2J=[xli2(1−x2)]−∫012x2ln(x2)1−x2=−4∫01ln(x)1−x2dx+4∫01ln(x)dx=−2∫01ln(x)1−xdx−2∫01ln(x)1+xdx−4=2Li2(1−x)]01+2∫01ln(1+x)xdx−4=π23−2Li(−1)−4=π23+π26−4=π22−4=12(π2−8)
Answered by mathmax by abdo last updated on 19/Jul/21
Υ=∫01ln(x)ln(1+x)dxwehaveddxln(1+x)=11+x=∑n=0∞(−1)nxn⇒ln(1+x)=∑n=0∞(−1)nxn+1n+1=∑n=1∞(−1)n−1xnn⇒Υ=∫01(∑n=1∞(−1)n−1xnn)ln(x)dx=∑n=1∞(−1)n−1n∫01xnln(x)dxUn=∫01xnln(x)dx=[xn+1n+1ln(x)]01−∫01xnn+1dx=−1(n+1)2⇒Υ=−∑n=1∞(−1)n−1n(n+1)2=∑n=1∞(−1)nn(n+1)21x(x+1)2=ax+bx+1+c(x+1)2=h(x)a=1,c=−1,limx→+∞xh(x)=0=a+b⇒b=−1⇒h(x)=1x−1x+1−1(x+1)2⇒Υ=∑n.1∞(−1)nn−∑n=1∞(−1)nn+1−∑n=1∞(−1)n(n+1)2wehave∑n=1∞(−1)nn=−ln2∑n=1∞(−1)nn+1=∑n=2∞(−1)n−1n=ln(2)−1∑n=1∞(−1)n(n+1)2=∑n=2∞(−1)n−1n2=−∑n=2∞(−1)nn2=−(∑n=1∞(−1)nn2+1)=−(21−2−1)ξ(2)−1=12π26−1=π212−1⇒Υ=−ln2−ln2+1−π212+1=2−2ln2−π212
Terms of Service
Privacy Policy
Contact: info@tinkutara.com