Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 145602 by mnjuly1970 last updated on 06/Jul/21

                   .....Advanced .........Calculus.....     Q::      Find the value of ::                           determinant ((( i ::   𝛗 := ∫_0 ^( 1) Ln ( Γ ( 2 + x ) )dx = ?    )),(( ii ::   Ω := Σ_(n=1) ^∞ (( 1)/( n ( 2n + 3 ))) = ?)))                                               .....m.n.july.1970.....    ■

.....Advanced.........Calculus.....Q::Findthevalueof::i::ϕ:=01Ln(Γ(2+x))dx=?ii::Ω:=n=11n(2n+3)=?.....m.n.july.1970.....

Answered by ajfour last updated on 06/Jul/21

(ii)  S=Σ_(n=1) ^∞ (1/(n(2n+3)))    ((3S)/2)=Σ_(n=1) ^∞ ((2n+3−2n)/(2n(2n+3)))          =Σ_(n=1) ^∞ ((1/(2n))−(1/(2n+3)))  ln (1−x)=−(x+(x^2 /2)+(x^3 /3)+..)  Σ_(n=1) ^∞ (1/(2n))=−(1/2)lim_(x→1)  ln (1−x)  ln (1+x)−ln (1−x)     =2(x+(x^3 /3)+(x^5 /5)+...)  lim_(x→1) [(1/2){ln (1+x)−ln (1−x)}    −x−(x^3 /3)] =Σ_(n=1) ^∞ (1/(2n+3))  ((3S)/2)=−(1/2)lim ln (1−x)−  lim_(x→1) [(1/2){ln (1+x)−ln (1−x)}                −x−(x^3 /3)]    ((3S)/2)= (4/3)−((ln 2)/2)    S=(8/9)−((ln 2)/3)

(ii)S=n=11n(2n+3)3S2=n=12n+32n2n(2n+3)=n=1(12n12n+3)ln(1x)=(x+x22+x33+..)n=112n=12limx1ln(1x)ln(1+x)ln(1x)=2(x+x33+x55+...)limx1[12{ln(1+x)ln(1x)}xx33]=n=112n+33S2=12limln(1x)limx1[12{ln(1+x)ln(1x)}xx33]3S2=43ln22S=89ln23

Commented by mnjuly1970 last updated on 06/Jul/21

bravo mr ajfor your work    is admirable...

bravomrajforyourworkisadmirable...

Answered by Olaf_Thorendsen last updated on 06/Jul/21

Ω = Σ_(n=1) ^∞ (1/(n(2n+3)))= (1/2)Σ_(n=0) ^∞ (1/((n+1)(n+(5/2))))  Ω = (1/2).((ψ((5/2))−ψ(1))/((5/2)−1)) = (1/3)(ψ((5/2))+γ)  ψ((5/2)) = ψ(1+(3/2)) = ψ((3/2))+(1/(3/2)) = ψ((3/2))+(2/3)  ψ((3/2)) = ψ(1+(1/2)) = ψ((1/2))+(1/(1/2)) = −2ln(2)−γ+2     Ω = (1/3)(−2ln(2)−γ+2+(2/3)+γ) = (2/3)((4/3)−ln(2))

Ω=n=11n(2n+3)=12n=01(n+1)(n+52)Ω=12.ψ(52)ψ(1)521=13(ψ(52)+γ)ψ(52)=ψ(1+32)=ψ(32)+13/2=ψ(32)+23ψ(32)=ψ(1+12)=ψ(12)+11/2=2ln(2)γ+2Ω=13(2ln(2)γ+2+23+γ)=23(43ln(2))

Commented by mnjuly1970 last updated on 06/Jul/21

grateful mr olaf   very nice as always..mercey

gratefulmrolafveryniceasalways..mercey

Answered by qaz last updated on 06/Jul/21

Γ(x)Γ(1−x)=(π/(sin πx))

Γ(x)Γ(1x)=πsinπx

Answered by Kamel last updated on 06/Jul/21

i) use t=1−x and: Γ(t)Γ(1−t)=(π/(sin(πt)))  ii.. Ω=Σ_(n=1) ^(+∞) (1/(n(2n+3)))=(2/3)Σ_(n=1) ^(+∞) ((1/(2n))−(1/(2n+3)))=(2/3)(Σ_(n=1) ^(+∞) ((1/(2n))−(1/(2n+1)))+Σ_(n=1) ^(+∞) ((1/(2n+1))−(1/(2(n+1)+1))))             =(2/3)(Σ_(n=1) ^(+∞) (((−1)^n )/n)+1+(1/3))=(2/3)((4/3)−Ln(2))=(8/9)−((2Ln(2))/3)

i)uset=1xand:Γ(t)Γ(1t)=πsin(πt)ii..Ω=+n=11n(2n+3)=23+n=1(12n12n+3)=23(+n=1(12n12n+1)++n=1(12n+112(n+1)+1))=23(+n=1(1)nn+1+13)=23(43Ln(2))=892Ln(2)3

Commented by mnjuly1970 last updated on 06/Jul/21

tashakor mr kamel

tashakormrkamel

Answered by ArielVyny last updated on 06/Jul/21

∅=∫_0 ^1 ln(Γ(2+x))dx  =∫_0 ^1 ln((x+1)!)dx  x+1=t→dt=dx  ∅=∫_1 ^2 ln(t!)dt=∫_1 ^2 ln[((t/e))^t (√(2πt))]  ∫_1 ^2 ln((t/e))^t +∫_1 ^2 ln((√(2πt)))dt  ∫_1 ^2 ln(e^(tln((t/e))) )+∫_1 ^2 ln((√(2π)))dt+(1/2)∫_1 ^2 ln(t)dt  ∫_1 ^2 tln((t/e))+ln((√(2π)))+(1/2)[xln(x)−x]_1 ^2   ∫_1 ^2 tln(t)−∫_1 ^2 tdt+ln((√(2π)))+(1/2)(2ln(2)+1)  ∫_1 ^2 tln(t)dt−(3/2)+(1/2)ln(2π)+((2ln2)/2)+(1/2)  ∫_1 ^2 tln(t)dt  du=ln(t)              v=t  u=tln(t)−t         dv=1  ∫_1 ^2 tln(t)=[t^2 ln(t)−t]−∫tlntdt+∫tdt  2∫_1 ^2 tln(t)dt=[t^2 ln(t)−t+(1/2)t^2 ]_1 ^2 =4ln(2)−2+(1/2)4+1−(1/2)  ∫_1 ^2 tln(t)dt=2ln(2)−1+1+(1/2)−(1/4)                         =2ln(2)+(1/4)  ∅=2ln(2)+(1/4)−(3/2)+((ln(2π))/2)+((2ln(2))/2)+(1/2)  ∅=2ln(2)+(1/4)−1+((ln(8π))/2)  ∅=−(3/4)+((2ln(4))/2)+((ln(8π))/2)  ∅=−(3/4)+(1/2)ln(8^3 π)

=01ln(Γ(2+x))dx=01ln((x+1)!)dxx+1=tdt=dx=12ln(t!)dt=12ln[(te)t2πt]12ln(te)t+12ln(2πt)dt12ln(etln(te))+12ln(2π)dt+1212ln(t)dt12tln(te)+ln(2π)+12[xln(x)x]1212tln(t)12tdt+ln(2π)+12(2ln(2)+1)12tln(t)dt32+12ln(2π)+2ln22+1212tln(t)dtdu=ln(t)v=tu=tln(t)tdv=112tln(t)=[t2ln(t)t]tlntdt+tdt212tln(t)dt=[t2ln(t)t+12t2]12=4ln(2)2+124+11212tln(t)dt=2ln(2)1+1+1214=2ln(2)+14=2ln(2)+1432+ln(2π)2+2ln(2)2+12=2ln(2)+141+ln(8π)2=34+2ln(4)2+ln(8π)2=34+12ln(83π)

Commented by mathmax by abdo last updated on 06/Jul/21

t!∼((t/e))^t (√(2πt))is valable pour t assez grand(t→∞)

t!(te)t2πtisvalablepourtassezgrand(t)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com