Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 141868 by mnjuly1970 last updated on 24/May/21

            ......Advanced  .....Calculus........           .....  ∫_( R) ^  (e^(−x^2 ) /((1+x^2 )^2 )) dx=?

......Advanced.....Calculus.............Rex2(1+x2)2dx=?

Commented by mindispower last updated on 24/May/21

sam as 141859  Quation sir ,a=1

samas141859Quationsir,a=1

Answered by Dwaipayan Shikari last updated on 24/May/21

∫_R (e^(−x^2 ) /((1+x^2 )^2 ))dx=2∫_0 ^∞ (e^(−x^2 ) /((1+x^2 )^2 ))dx  =2∫_0 ^∞ ∫_0 ^∞ ue^(−x^2 −ux^2 ) e^(−u) dxdu  =(√π)∫_0 ^∞ (u/( (√(u+1))))e^(−u) du  =2(√π) ∫_1 ^∞ (t^2 −1)e^(−t^2 +1) dt  =2e(√π)( ∫_0 ^∞ t^2 e^(−t^2 ) −∫_0 ^1 t^2 e^(−t^2 ) dt− ∫_0 ^∞ e^(−t^2 ) + ∫_0 ^1 e^(−t^2 ) dt)  =2e(√π)(−((√π)/4))−2e(√π) (((√π)/4)erf(1)−(1/(2e))−((√π)/2)erf(1))  =(√π)−((πe)/2)+((πe)/2)erf(1) =(√π)−((πe)/2)(1−erf(1))=(√𝛑)−((𝛑e)/2)erfc(1)  1−erf(x)=erfc(x)  ∫e^(−t^2 ) dt=((√π)/2)erfc(t)+C  ∫e^(−t^2 ) dt=te^(−t^2 ) +2∫t^2 e^(−t^2 ) dt  ⇒((√π)/4)erfc(t)−(t/2)e^(−t^2 ) =∫t^2 e^(−t^2 ) dt

Rex2(1+x2)2dx=20ex2(1+x2)2dx=200uex2ux2eudxdu=π0uu+1eudu=2π1(t21)et2+1dt=2eπ(0t2et201t2et2dt0et2+01et2dt)=2eπ(π4)2eπ(π4erf(1)12eπ2erf(1))=ππe2+πe2erf(1)=ππe2(1erf(1))=ππe2erfc(1)1erf(x)=erfc(x)et2dt=π2erfc(t)+Cet2dt=tet2+2t2et2dtπ4erfc(t)t2et2=t2et2dt

Commented by mathmax by abdo last updated on 24/May/21

f(a)=∫_0 ^∞  (e^(−x^2 ) /(x^2  +a^2 ))dx ⇒f(a)=∫_0 ^∞ ∫_0 ^∞  (e^(−t(x^2 +a^2 )) dt)e^(−x^2 ) dx  =∫_0 ^∞ ( ∫_0 ^∞  e^(−tx^2 −x^2 ) dx)e^(−ta^2 ) dt [but  ∫_0 ^∞  e^(−tx^2 −x^2 ) dx =∫_0 ^∞ e^(−(t+1)x^2 ) dx =_((√(t+1))x=z)  ∫_0 ^∞  e^(−z^2 ) (dz/( (√(t+1))))=((√π)/(2(√(t+1)))) ⇒  f(a)=((√π)/2)∫_0 ^∞  (e^(−ta^2 ) /( (√(t+1))))dt =_((√(t+1))=u)   ((√π)/2)∫_1 ^∞  (e^(−a^2 (u^2 −1)) /u)(2u)du  =(√π)e^a^2   ∫_1 ^∞  e^(−a^2 u^2 ) du ⇒  f^′ (a)=2a(√π)e^a^2   ∫_1 ^∞  e^(−a^2 u^2 ) du +(√π)e^a^2  ∫_1 ^∞ −2au^2  e^(−a^2 u^2 )  du  =2a(√π)e^a^2   ∫_1 ^∞  e^(−a^2 u^2 ) du −2a(√π)e^a^2  ∫_1 ^∞  u^2  e^(−a^2 u^2 ) du [also  ∫_1 ^∞  e^(−a^2 u^2 ) du =_(au=z)   ∫_a ^∞  e^(−z^2 ) (dz/a)  and  ∫_1 ^∞  u^2  e^(−a^2 u^2 ) du =_(au=z)   ∫_a ^∞  (z^2 /a^2 )e^(−z^2 ) (dz/a)=(1/a^3 )∫_a ^∞  z^2  e^(−z^2 ) dz ⇒  f^′ (a)=2(√π)e^a^2  ∫_a ^∞ e^(−z^2 ) dz−((2(√π))/a^2 ) e^a^2  ∫_a ^∞  z^2  e^(−z^2 ) dz  f^′ (a)=−2a ∫_0 ^∞  (e^(−x^2 ) /((x^2  +a^2 )^2 ))dx ⇒  −2a ∫_0 ^∞  (e^(−x^2 ) /((x^2  +a^2 )^2 ))dx =2(√π)e^a^2  (∫_a ^∞  e^(−z^2 ) dz−(1/a^2 )∫_a ^∞  z^2  e^(−z^2 ) dz) ⇒  ∫_0 ^∞  (e^(−x^2 ) /((x^2  +a^2 )^2 ))dx =(√π)e^a^2  ((1/a^3 )∫_a ^∞  z^2  e^(−z^2 ) dz−∫_a ^∞  e^(−z^2 ) dz)  a=(√3) ⇒∫_0 ^∞   (e^(−x^2 ) /((x^2 +3)^2 ))dx =(√π)e^3 ((1/(3(√3)))∫_(√3) ^∞  z^2  e^(−z^2 ) dz−∫_(√3) ^∞ e^(−z^2 ) dz)  a=1 ⇒∫_0 ^∞  (e^(−x^2 ) /((x^2  +1)^2 ))dx=(√π)e(∫_1 ^∞  z^2 e^(−z^2 ) dz−∫_1 ^∞  e^(−z^2 ) dz)  we have ∫_1 ^∞  z(ze^(−z^2 ) )dz =−(1/2)∫_1 ^∞ z(−2z e^(−z^2 ) )dz  =−(1/2){ [ze^(−z^2 ) ]_1 ^∞ −∫_0 ^∞ ze^(−z^2 )  dz}  =−(1/2){e^(−1) −[−(1/2)e^(−z^2 ) ]_1 ^∞ }=−(1/2)(e^(−1) −(1/2)e^(−1) )  =−(1/2)×(1/2)e^(−1)  =−(1/(4e)) ....

f(a)=0ex2x2+a2dxf(a)=00(et(x2+a2)dt)ex2dx=0(0etx2x2dx)eta2dt[but0etx2x2dx=0e(t+1)x2dx=t+1x=z0ez2dzt+1=π2t+1f(a)=π20eta2t+1dt=t+1=uπ21ea2(u21)u(2u)du=πea21ea2u2duf(a)=2aπea21ea2u2du+πea212au2ea2u2du=2aπea21ea2u2du2aπea21u2ea2u2du[also1ea2u2du=au=zaez2dzaand1u2ea2u2du=au=zaz2a2ez2dza=1a3az2ez2dzf(a)=2πea2aez2dz2πa2ea2az2ez2dzf(a)=2a0ex2(x2+a2)2dx2a0ex2(x2+a2)2dx=2πea2(aez2dz1a2az2ez2dz)0ex2(x2+a2)2dx=πea2(1a3az2ez2dzaez2dz)a=30ex2(x2+3)2dx=πe3(1333z2ez2dz3ez2dz)a=10ex2(x2+1)2dx=πe(1z2ez2dz1ez2dz)wehave1z(zez2)dz=121z(2zez2)dz=12{[zez2]10zez2dz}=12{e1[12ez2]1}=12(e112e1)=12×12e1=14e....

Commented by mathmax by abdo last updated on 24/May/21

sorry   ∫_0 ^∞  (e^(−x^2 ) /((x^2  +a^2 )^2 ))dx=(√π)e^a^2  ((1/a^3 )∫_a ^∞  z^2  e^(−z^2 ) dz−(1/a)∫_a ^∞  e^(−z^2 ) dz)

sorry0ex2(x2+a2)2dx=πea2(1a3az2ez2dz1aaez2dz)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com