Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 188381 by mnjuly1970 last updated on 28/Feb/23

            Advanced  calculus         Find  the  value  of the following series.             Ω = Σ_(n=1) ^∞  (( (−1)^( n)  ζ ( n ))/(n. 2^( n) )) = ?             ζ ( z ) = Σ_( n=1) ^∞ (( 1)/(n^( z)  ))     ;    Re ( z )>1

AdvancedcalculusFindthevalueofthefollowingseries.Ω=n=1(1)nζ(n)n.2n=?ζ(z)=n=11nz;Re(z)>1

Answered by witcher3 last updated on 15/Mar/23

n≥2  ζ(1) diverge

n2ζ(1)diverge

Answered by witcher3 last updated on 18/Mar/23

Ω=Σ_(n≥2) (((−1)^n ζ(n))/(n.2^n ))  We have Γ(n)ζ(n)=∫_0 ^∞ (x^(n−1) /(e^x −1))dx,∀n≥2  ζ(n)=(1/((n−1)!))∫_0 ^∞ (x^(n−1) /(e^x −1))dx  𝛀=Σ_(n≥2) ∫_0 ^∞ (((−1)^n x^(n−1) )/(2^n .n!))dx  Σ_(n≥0) (((−1)^n x^(n−1) )/(2^n .n!))   cv Uniformly to exp  this We can exchangeΣ and ∫ in Ω  ⇒Ω=∫_0 ^∞ (1/x)Σ_(n≥2) (((−(x/2))^n )/(n!))dx=∫_0 ^∞ ((e^(−(x/2)) −1+(x/2))/(x(e^x −1)))dx  =∫_0 ^∞ −(e^(−x) /(x(e^(−(x/2)) +1)))+(e^(−x) /(2(1−e^(−x) )))dx  f(a)=∫_0 ^∞ e^(−ax) (−(1/(x(e^(−(x/2)) +1)))+(1/(2(1−e^(−x) ))))dx  f′(a)=∫_0 ^∞ e^(−ax) ((1/(e^(−(x/2)) +1))−(x/(2(1−e^(−x) ))))dx  ∫_0 ^∞ −(x/(2(1−e^(−x) )))e^(−ax) dx=−(1/2)Σ_(k≥0) ∫_0 ^∞ xe^(−(a+k)x)   =−(1/2).Γ(2)Σ_(k≥0) (1/((k+a)^2 ))=−(1/2)Ψ^((1)) (a)  ∫_0 ^∞ (e^(−ax) /(e^(−(x/2)) +1))=Σ_(k≥0) (−1)^k ∫_0 ^∞ e^(−(a+(k/2))x)   =Σ_(k≥0) (((−1)^k )/((a+(k/2))))=Σ_(k≥0) (1/(a+k))−(1/(a+(1/2)+k))  =Ψ(a+(1/2))−𝚿(a)  f′(a)=Ψ(a+(1/2))−Ψ(a)−((Ψ^((1)) (a))/2)  f(a)=log(((Γ(a+(1/2)))/(Γ(a))))−(1/2)Ψ(a)+c  lim_(a→∞) ∫_0 ^∞ e^(−ax) (−(1/(x(e^(−(x/2)) +1)))+(1/(2(1−e^(−x) ))))dx  =∫_0 ^∞ lim_(a→∞) e^(−ax) (−(1/(x(e^(−(x/2)) +1)))+(1/(2(1−e^(−x) ))))dx=0  ⇒lim_(a→∞) ln(((Γ(a+(1/2)))/(Γ(a))))−((Ψ(a))/2)+c=0  Γ(a)∼(√(2π)).a^(a−(1/2)) e^(−a)   Γ(a+(1/2))∼(√(2π))a^a e^(−a)   Ψ(a)∼ln(a)  lim_(a→∞) f(a)=lim_(a→∞) ln((√a))−(1/2)(ln(a))=0⇒c=0  f(a)=ln(((Γ(a+(1/2)))/(Γ(a))))−((Ψ(a))/2)  Ω=f(1)=ln(((Γ((3/2)))/(Γ(1))))−((𝚿(1))/2)=ln(((√π)/2))−((Ψ(1))/2)  =((ln(π)+γ)/2)−ln(2)=Σ_(n≥2) (((−1)^n ζ(n))/(2^n .n))

Ω=n2(1)nζ(n)n.2nWehaveΓ(n)ζ(n)=0xn1ex1dx,n2ζ(n)=1(n1)!0xn1ex1dxΩ=n20(1)nxn12n.n!dxn0(1)nxn12n.n!cvUniformlytoexpthisWecanexchangeΣandinΩΩ=01xn2(x2)nn!dx=0ex21+x2x(ex1)dx=0exx(ex2+1)+ex2(1ex)dxf(a)=0eax(1x(ex2+1)+12(1ex))dxf(a)=0eax(1ex2+1x2(1ex))dx0x2(1ex)eaxdx=12k00xe(a+k)x=12.Γ(2)k01(k+a)2=12Ψ(1)(a)0eaxex2+1=k0(1)k0e(a+k2)x=k0(1)k(a+k2)=k01a+k1a+12+k=Ψ(a+12)Ψ(a)f(a)=Ψ(a+12)Ψ(a)Ψ(1)(a)2f(a)=log(Γ(a+12)Γ(a))12Ψ(a)+clima0eax(1x(ex2+1)+12(1ex))dx=0limeaax(1x(ex2+1)+12(1ex))dx=0limlna(Γ(a+12)Γ(a))Ψ(a)2+c=0Γ(a)2π.aa12eaΓ(a+12)2πaaeaΨ(a)ln(a)limfa(a)=limlna(a)12(ln(a))=0c=0f(a)=ln(Γ(a+12)Γ(a))Ψ(a)2Ω=f(1)=ln(Γ(32)Γ(1))Ψ(1)2=ln(π2)Ψ(1)2=ln(π)+γ2ln(2)=n2(1)nζ(n)2n.n

Terms of Service

Privacy Policy

Contact: info@tinkutara.com