All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 188381 by mnjuly1970 last updated on 28/Feb/23
AdvancedcalculusFindthevalueofthefollowingseries.Ω=∑∞n=1(−1)nζ(n)n.2n=?ζ(z)=∑∞n=11nz;Re(z)>1
Answered by witcher3 last updated on 15/Mar/23
n⩾2ζ(1)diverge
Answered by witcher3 last updated on 18/Mar/23
Ω=∑n⩾2(−1)nζ(n)n.2nWehaveΓ(n)ζ(n)=∫0∞xn−1ex−1dx,∀n⩾2ζ(n)=1(n−1)!∫0∞xn−1ex−1dxΩ=∑n⩾2∫0∞(−1)nxn−12n.n!dx∑n⩾0(−1)nxn−12n.n!cvUniformlytoexpthisWecanexchangeΣand∫inΩ⇒Ω=∫0∞1x∑n⩾2(−x2)nn!dx=∫0∞e−x2−1+x2x(ex−1)dx=∫0∞−e−xx(e−x2+1)+e−x2(1−e−x)dxf(a)=∫0∞e−ax(−1x(e−x2+1)+12(1−e−x))dxf′(a)=∫0∞e−ax(1e−x2+1−x2(1−e−x))dx∫0∞−x2(1−e−x)e−axdx=−12∑k⩾0∫0∞xe−(a+k)x=−12.Γ(2)∑k⩾01(k+a)2=−12Ψ(1)(a)∫0∞e−axe−x2+1=∑k⩾0(−1)k∫0∞e−(a+k2)x=∑k⩾0(−1)k(a+k2)=∑k⩾01a+k−1a+12+k=Ψ(a+12)−Ψ(a)f′(a)=Ψ(a+12)−Ψ(a)−Ψ(1)(a)2f(a)=log(Γ(a+12)Γ(a))−12Ψ(a)+clima→∞∫0∞e−ax(−1x(e−x2+1)+12(1−e−x))dx=∫0∞limea→∞−ax(−1x(e−x2+1)+12(1−e−x))dx=0⇒limlna→∞(Γ(a+12)Γ(a))−Ψ(a)2+c=0Γ(a)∼2π.aa−12e−aΓ(a+12)∼2πaae−aΨ(a)∼ln(a)limfa→∞(a)=limlna→∞(a)−12(ln(a))=0⇒c=0f(a)=ln(Γ(a+12)Γ(a))−Ψ(a)2Ω=f(1)=ln(Γ(32)Γ(1))−Ψ(1)2=ln(π2)−Ψ(1)2=ln(π)+γ2−ln(2)=∑n⩾2(−1)nζ(n)2n.n
Terms of Service
Privacy Policy
Contact: info@tinkutara.com