All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 192399 by mnjuly1970 last updated on 17/May/23
Algebra(1)G,isagroupando(G)=p2.provethatGisanabeliangroup.hint:(pisprimenumber)−−−−−−−−−−−−−
Commented by aleks041103 last updated on 21/May/23
o(G)istheorderofthegroup,right?I.e.thenumberofelementsinG
Answered by aleks041103 last updated on 21/May/23
let′susethecenterofG,i.e.Z(G)=Z={z∈G∣gz=zg,∀g∈G}itisknownthatZ⊴G.bylagrange′stheorem:o(Z)o(G/Z)=o(G)=p2⇒o(Z)=1,p,p21stcase:―ifo(Z)=p2=o(G),thenG=Z⇒Gisabelian.2ndcase:―ifo(Z)=p,theno(G/Z)=p.everygroupofprimeorderiscyclic.⇒∃a∉Z,s.t.G/Z={akZ∣k=0,1,...,p−1}⇒∀g∈G,∃z∈Z,∃k∈Zp:g=akz⇒letg1,g2∈G⇒g1=ajz1andg2=akz2⇒g1g2=ajz1akz2sincez1,2∈Ztheycommutewitheverything⇒g1g2=ajz1akz2=akz2ajz1=g2g1⇒GisabelianandZ≡G.3rdcase:―ifo(Z)=1,Z={e}.SinceGisap−group(o(G)=pn),itisknownthatthecenterZ(G)isnontrivial,i.e.Z(G)≠{e}.Conclusion:Gisabelian.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com