Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 226

Question Number 119996    Answers: 1   Comments: 0

{ ((x^3 +y^2 =a)),((x^2 +y^3 =b)) :} [solve for:x,y,a≠b∈R]

{x3+y2=ax2+y3=b[solvefor:x,y,abR]

Question Number 119979    Answers: 3   Comments: 1

Question Number 119939    Answers: 3   Comments: 0

Question Number 119921    Answers: 2   Comments: 0

solving the following system of equations { ((((3x−y)/(x−3y))=x^2 )),((((3y−z)/(y−3z))=y^2 )),((((3z−x)/(z−3x))=z^2 )) :}

solvingthefollowingsystemofequations{3xyx3y=x23yzy3z=y23zxz3x=z2

Question Number 119894    Answers: 2   Comments: 0

Question Number 119849    Answers: 1   Comments: 0

Find all pair(x,y) of real numbers that are the solutions to the system { ((x^4 +2x^3 −y=−(1/4)+(√3))),((y^4 +2y^3 −x=−(1/4)−(√3))) :}

Findallpair(x,y)ofrealnumbersthatarethesolutionstothesystem{x4+2x3y=14+3y4+2y3x=143

Question Number 119848    Answers: 1   Comments: 0

Solve in real numbers the equation (x)^(1/(3 )) + ((x−1))^(1/(3 )) + ((x+1))^(1/(3 )) = 0

Solveinrealnumberstheequationx3+x13+x+13=0

Question Number 119832    Answers: 0   Comments: 0

evaluate: I = ∫_0 ^( 1) (((x+1)/x))^(x!) dx

evaluate:I=01(x+1x)x!dx

Question Number 119831    Answers: 0   Comments: 1

evaluate: I = ∫_1 ^( ∞) ((1/x))^x dx

evaluate:I=1(1x)xdx

Question Number 119807    Answers: 1   Comments: 0

Let f be a real-valued function defined on the inte- rval [−1, 1]. If the area of the equilateral triangle with (0, 0) and (x, f(x)) as two vertices is (√3)/4, then f(x) is equal to (A) (√(1−x^2 )) (B) (√(1+x^2 )) (C) −(√(1−x^2 )) (D) −(√(1+x^2 ))

Letfbearealvaluedfunctiondefinedontheinterval[1,1].Iftheareaoftheequilateraltrianglewith(0,0)and(x,f(x))astwoverticesis3/4,thenf(x)isequalto(A)1x2(B)1+x2(C)1x2(D)1+x2

Question Number 119800    Answers: 0   Comments: 2

Examples of functions such that f(x+y)=f(x)+f(y) for all x,y∈R

Examplesoffunctionssuchthatf(x+y)=f(x)+f(y)forallx,yR

Question Number 119801    Answers: 0   Comments: 0

If f:R→R is a function such that f(0)=1 and f(x+f(y))= f(x)+y for all x, y∈R, then (A) 1 is a period of f (B) f(n)=1 for all integers n (C) f(n)=n for all integers n (D) f(−1)=0

Iff:RRisafunctionsuchthatf(0)=1andf(x+f(y))=f(x)+yforallx,yR,then(A)1isaperiodoff(B)f(n)=1forallintegersn(C)f(n)=nforallintegersn(D)f(1)=0

Question Number 119797    Answers: 0   Comments: 0

Q1 Let M_2 be the set of square matrices of order 2 over the real number system and R={(A,B)∈M_2 ×M_2 ∣A=P^( T) BP for some non-singular P ∈M} Then R is (A) symmetric (B) transitive (C) reflexive on M_2 (D) not an equivalence relation on M_2 Q2 For any integer n, let I_n be the interval (n, n+1). Define R={(x, y)∈R∣both x, y ∈ I_n for some n∈Z} Then R is (A) reflexive on R (B) symmetric (C) transitive (D) an equivalence relation

Q1LetM2bethesetofsquarematricesoforder2overtherealnumbersystemandR={(A,B)M2×M2A=PTBPforsomenonsingularPM}ThenRis(A)symmetric(B)transitive(C)reflexiveonM2(D)notanequivalencerelationonM2Q2Foranyintegern,letInbetheinterval(n,n+1).DefineR={(x,y)Rbothx,yInforsomenZ}ThenRis(A)reflexiveonR(B)symmetric(C)transitive(D)anequivalencerelation

Question Number 119795    Answers: 4   Comments: 0

Solve in real numbers the system of equations { (((3x+y)(x+3y)(√(xy)) =14)),(((x+y)(x^2 +14xy+y^2 )= 36)) :}

Solveinrealnumbersthesystemofequations{(3x+y)(x+3y)xy=14(x+y)(x2+14xy+y2)=36

Question Number 119774    Answers: 1   Comments: 0

Question Number 119757    Answers: 0   Comments: 0

For any integer n, let I_n be the interval (n, n+1). Define R={(x, y)∈R∣both x, y ∈ I_n for some n∈Z} Then R is (A) reflexive on R (B) symmetric (C) transitive (D) an equivalence relation

Foranyintegern,letInbetheinterval(n,n+1).DefineR={(x,y)Rbothx,yInforsomenZ}ThenRis(A)reflexiveonR(B)symmetric(C)transitive(D)anequivalencerelation

Question Number 119713    Answers: 1   Comments: 3

If 3x+(1/(2x))=6 find 8x^3 +(1/(27x^3 ))

If3x+12x=6find8x3+127x3

Question Number 119635    Answers: 1   Comments: 0

If a function f:R→R satisfies the relation f(x+1)+f(x−1)=(√3)f(x) for all x∈R then a period of f is (A) 10 (B) 12 (C) 6 (D) 4

Ifafunctionf:RRsatisfiestherelationf(x+1)+f(x1)=3f(x)forallxRthenaperiodoffis(A)10(B)12(C)6(D)4

Question Number 119634    Answers: 2   Comments: 0

Q1 If f:R→R is defined by f(x)=[x]+[x+(1/2)]+[x+(2/3)]−3x+5 where [x] is the integral part of x, then a period of f is (A) 1 (B) 2/3 (C) 1/2 (D) 1/3 Q2 Let a<c<b such that c−a=b−c. If f:R→R is a function satisfying the relation f(x+a)+f(x+b)=f(x+c) for all x∈R then a period of f is (A) (b−a) (B) 2(b−a) (C) 3(b−a) (D) 4(b−a)

Q1Iff:RRisdefinedbyf(x)=[x]+[x+12]+[x+23]3x+5where[x]istheintegralpartofx,thenaperiodoffis(A)1(B)2/3(C)1/2(D)1/3Q2Leta<c<bsuchthatca=bc.Iff:RRisafunctionsatisfyingtherelationf(x+a)+f(x+b)=f(x+c)forallxRthenaperiodoffis(A)(ba)(B)2(ba)(C)3(ba)(D)4(ba)

Question Number 119580    Answers: 3   Comments: 0

Given k ∈ N. 1) justify these relations: 3^(2k) +1≡2[8] and 3^(2k+1) +1≡4[8]. 2) Given (E): 2^n −3^m =1. n and m are unknowed. • Show that if m is even , (E) does not have solution. ■ Deduct from the first question 1) that the couple (2;1) is the only solution of (E).

GivenkN.1)justifytheserelations:32k+12[8]and32k+1+14[8].2)Given(E):2n3m=1.nandmareunknowed.Showthatifmiseven,(E)doesnothavesolution.Deductfromthefirstquestion1)thatthecouple(2;1)istheonlysolutionof(E).

Question Number 119576    Answers: 2   Comments: 0

Question Number 119540    Answers: 1   Comments: 0

Question Number 119538    Answers: 1   Comments: 1

Question Number 119490    Answers: 0   Comments: 0

Let a<c<b such that c−a=b−c. If f:R→R is a function satisfying the relation f(x+a)+f(x+b)=f(x+c) for all x∈R then a period of f is (A) (b−a) (B) 2(b−a) (C) 3(b−a) (D) 4(b−a)

Leta<c<bsuchthatca=bc.Iff:RRisafunctionsatisfyingtherelationf(x+a)+f(x+b)=f(x+c)forallxRthenaperiodoffis(A)(ba)(B)2(ba)(C)3(ba)(D)4(ba)

Question Number 119483    Answers: 1   Comments: 0

Let a>0 and f:R→R a function satisfying f(x+a)=1+[2−3f(x)+3f(x)^2 −f(x)^3 ]^(1/3) for all x∈R. Then a period of f(x) is ka where k is a positive integer whose value is (A)1 (B)2 (C)3 (D)4

Leta>0andf:RRafunctionsatisfyingf(x+a)=1+[23f(x)+3f(x)2f(x)3]1/3forallxR.Thenaperiodoff(x)iskawherekisapositiveintegerwhosevalueis(A)1(B)2(C)3(D)4

Question Number 119396    Answers: 3   Comments: 1

If the roots of the equation 24x^4 −52x^3 +18x^2 +13x−6=0 are α , −α , β and (1/β). Find the value of α and β.

Iftherootsoftheequation24x452x3+18x2+13x6=0areα,α,βand1β.Findthevalueofαandβ.

  Pg 221      Pg 222      Pg 223      Pg 224      Pg 225      Pg 226      Pg 227      Pg 228      Pg 229      Pg 230   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com