Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 228

Question Number 119801    Answers: 0   Comments: 0

If f:R→R is a function such that f(0)=1 and f(x+f(y))= f(x)+y for all x, y∈R, then (A) 1 is a period of f (B) f(n)=1 for all integers n (C) f(n)=n for all integers n (D) f(−1)=0

Iff:RRisafunctionsuchthatf(0)=1andf(x+f(y))=f(x)+yforallx,yR,then(A)1isaperiodoff(B)f(n)=1forallintegersn(C)f(n)=nforallintegersn(D)f(1)=0

Question Number 119797    Answers: 0   Comments: 0

Q1 Let M_2 be the set of square matrices of order 2 over the real number system and R={(A,B)∈M_2 ×M_2 ∣A=P^( T) BP for some non-singular P ∈M} Then R is (A) symmetric (B) transitive (C) reflexive on M_2 (D) not an equivalence relation on M_2 Q2 For any integer n, let I_n be the interval (n, n+1). Define R={(x, y)∈R∣both x, y ∈ I_n for some n∈Z} Then R is (A) reflexive on R (B) symmetric (C) transitive (D) an equivalence relation

Q1LetM2bethesetofsquarematricesoforder2overtherealnumbersystemandR={(A,B)M2×M2A=PTBPforsomenonsingularPM}ThenRis(A)symmetric(B)transitive(C)reflexiveonM2(D)notanequivalencerelationonM2Q2Foranyintegern,letInbetheinterval(n,n+1).DefineR={(x,y)Rbothx,yInforsomenZ}ThenRis(A)reflexiveonR(B)symmetric(C)transitive(D)anequivalencerelation

Question Number 119795    Answers: 4   Comments: 0

Solve in real numbers the system of equations { (((3x+y)(x+3y)(√(xy)) =14)),(((x+y)(x^2 +14xy+y^2 )= 36)) :}

Solveinrealnumbersthesystemofequations{(3x+y)(x+3y)xy=14(x+y)(x2+14xy+y2)=36

Question Number 119774    Answers: 1   Comments: 0

Question Number 119757    Answers: 0   Comments: 0

For any integer n, let I_n be the interval (n, n+1). Define R={(x, y)∈R∣both x, y ∈ I_n for some n∈Z} Then R is (A) reflexive on R (B) symmetric (C) transitive (D) an equivalence relation

Foranyintegern,letInbetheinterval(n,n+1).DefineR={(x,y)Rbothx,yInforsomenZ}ThenRis(A)reflexiveonR(B)symmetric(C)transitive(D)anequivalencerelation

Question Number 119713    Answers: 1   Comments: 3

If 3x+(1/(2x))=6 find 8x^3 +(1/(27x^3 ))

If3x+12x=6find8x3+127x3

Question Number 119635    Answers: 1   Comments: 0

If a function f:R→R satisfies the relation f(x+1)+f(x−1)=(√3)f(x) for all x∈R then a period of f is (A) 10 (B) 12 (C) 6 (D) 4

Ifafunctionf:RRsatisfiestherelationf(x+1)+f(x1)=3f(x)forallxRthenaperiodoffis(A)10(B)12(C)6(D)4

Question Number 119634    Answers: 2   Comments: 0

Q1 If f:R→R is defined by f(x)=[x]+[x+(1/2)]+[x+(2/3)]−3x+5 where [x] is the integral part of x, then a period of f is (A) 1 (B) 2/3 (C) 1/2 (D) 1/3 Q2 Let a<c<b such that c−a=b−c. If f:R→R is a function satisfying the relation f(x+a)+f(x+b)=f(x+c) for all x∈R then a period of f is (A) (b−a) (B) 2(b−a) (C) 3(b−a) (D) 4(b−a)

Q1Iff:RRisdefinedbyf(x)=[x]+[x+12]+[x+23]3x+5where[x]istheintegralpartofx,thenaperiodoffis(A)1(B)2/3(C)1/2(D)1/3Q2Leta<c<bsuchthatca=bc.Iff:RRisafunctionsatisfyingtherelationf(x+a)+f(x+b)=f(x+c)forallxRthenaperiodoffis(A)(ba)(B)2(ba)(C)3(ba)(D)4(ba)

Question Number 119580    Answers: 3   Comments: 0

Given k ∈ N. 1) justify these relations: 3^(2k) +1≡2[8] and 3^(2k+1) +1≡4[8]. 2) Given (E): 2^n −3^m =1. n and m are unknowed. • Show that if m is even , (E) does not have solution. ■ Deduct from the first question 1) that the couple (2;1) is the only solution of (E).

GivenkN.1)justifytheserelations:32k+12[8]and32k+1+14[8].2)Given(E):2n3m=1.nandmareunknowed.Showthatifmiseven,(E)doesnothavesolution.Deductfromthefirstquestion1)thatthecouple(2;1)istheonlysolutionof(E).

Question Number 119576    Answers: 2   Comments: 0

Question Number 119540    Answers: 1   Comments: 0

Question Number 119538    Answers: 1   Comments: 1

Question Number 119490    Answers: 0   Comments: 0

Let a<c<b such that c−a=b−c. If f:R→R is a function satisfying the relation f(x+a)+f(x+b)=f(x+c) for all x∈R then a period of f is (A) (b−a) (B) 2(b−a) (C) 3(b−a) (D) 4(b−a)

Leta<c<bsuchthatca=bc.Iff:RRisafunctionsatisfyingtherelationf(x+a)+f(x+b)=f(x+c)forallxRthenaperiodoffis(A)(ba)(B)2(ba)(C)3(ba)(D)4(ba)

Question Number 119483    Answers: 1   Comments: 0

Let a>0 and f:R→R a function satisfying f(x+a)=1+[2−3f(x)+3f(x)^2 −f(x)^3 ]^(1/3) for all x∈R. Then a period of f(x) is ka where k is a positive integer whose value is (A)1 (B)2 (C)3 (D)4

Leta>0andf:RRafunctionsatisfyingf(x+a)=1+[23f(x)+3f(x)2f(x)3]1/3forallxR.Thenaperiodoff(x)iskawherekisapositiveintegerwhosevalueis(A)1(B)2(C)3(D)4

Question Number 119396    Answers: 3   Comments: 1

If the roots of the equation 24x^4 −52x^3 +18x^2 +13x−6=0 are α , −α , β and (1/β). Find the value of α and β.

Iftherootsoftheequation24x452x3+18x2+13x6=0areα,α,βand1β.Findthevalueofαandβ.

Question Number 119303    Answers: 3   Comments: 0

let x,y,z be positive real numbers such that x+y+z=1. Determine the minimum value of (1/x)+(4/y)+(9/z).

letx,y,zbepositiverealnumberssuchthatx+y+z=1.Determinetheminimumvalueof1x+4y+9z.

Question Number 119204    Answers: 0   Comments: 0

40−misolning yechimi: y=(x^3 /3)+2x^2 −5x+7 Kritik nuqtalarini topish uchun: 1. Funksiyadan hosila olamiz 2. Funksiya hosilasini nolga tenglab, tenglamani yechamiz. y′=x^2 +4x−5=0 ⇒ x_1 =1; x_2 =−5 x_1 +x_2 =1−5=−4 Javob: −4

40misolningyechimi:y=x33+2x25x+7Kritiknuqtalarinitopishuchun:1.Funksiyadanhosilaolamiz2.Funksiyahosilasininolgatenglab,tenglamaniyechamiz.y=x2+4x5=0x1=1;x2=5x1+x2=15=4Javob:4

Question Number 119160    Answers: 0   Comments: 5

Question Number 119159    Answers: 2   Comments: 0

We are in C. Given Z_(0 ) =1 ; Z_(n+1 ) =(1/2)Z_(n ) +(1/2)i n ∈ N. Show that ∀ n ∈ N^(∗ ) , ∣Z_n ∣<1.

WeareinC.GivenZ0=1;Zn+1=12Zn+12inN.ShowthatnN,Zn∣<1.

Question Number 119147    Answers: 0   Comments: 0

Question Number 119141    Answers: 1   Comments: 0

Question Number 119177    Answers: 1   Comments: 0

Question Number 119133    Answers: 0   Comments: 0

Informatica (11110000)_2 =0•2^0 +0•2^1 +0•2^2 +0•2^3 +1•2^4 +1•2^5 +1•2^6 +1•2^7 = =0•1+0•2+0•4+0•8+1•16+1•32+1•64+1•128= 0+0+0+0+16+32+64+128=(240)_(10) (11000101)_2 =1•2^0 +0•2^1 +1•2^2 +0•2^3 +0•2^4 +0•2^5 +1•2^6 +1•2^7 = = 1•1+0•2+1•4+0•8+0•16+0•32+1•64+1•128= (197)_(10) (01101001)_2 =

Informatica(11110000)2=020+021+022+023+124+125+126+127==01+02+04+08+116+132+164+1128=0+0+0+0+16+32+64+128=(240)10(11000101)2=120+021+122+023+024+025+126+127==11+02+14+08+016+032+164+1128=(197)10(01101001)2=

Question Number 119119    Answers: 2   Comments: 0

Question Number 119107    Answers: 1   Comments: 0

Question Number 119059    Answers: 1   Comments: 0

  Pg 223      Pg 224      Pg 225      Pg 226      Pg 227      Pg 228      Pg 229      Pg 230      Pg 231      Pg 232   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com