Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 230

Question Number 118298    Answers: 0   Comments: 1

b, x, y, c are consecutive terms of a G.P. ∴ x = br, y = br^2 , c = br^3 A.M. between b and c is a ∴ ((b+c)/2) = a ⇒ 2a = b+c 2abc = (b+c)bc = b^2 c + bc^2 = b^2 (br^3 ) + b(br^3 )^2 = b^3 r^3 + b^3 r^6 = (br)^3 + (br^2 )^3 = x^3 + y^3 ∴ x^3 + y^3 = 2abc ←

b,x,y,careconsecutivetermsofaG.P.x=br,y=br2,c=br3A.M.betweenbandcisab+c2=a2a=b+c2abc=(b+c)bc=b2c+bc2=b2(br3)+b(br3)2=b3r3+b3r6=(br)3+(br2)3=x3+y3x3+y3=2abc

Question Number 118286    Answers: 2   Comments: 0

What condition should be satisfied by the vectors a and b for the following relations to hold true :(a)∣a+b∣=∣a−b∣ ;(b)∣ a+b∣>∣ a−b∣;(c)∣a+ b∣< ∣a−b∣

Whatconditionshouldbesatisfiedbythevectorsaandbforthefollowingrelationstoholdtrue:(a)a+b∣=∣ab;(b)a+b∣>∣ab;(c)a+b∣<ab

Question Number 118280    Answers: 0   Comments: 1

(26) OA^(→) = a^→ = (((4.8)),((3.6)) ) , OB^(→) = b^→ = ((( 8)),((15)) ) a^→ . b^→ = (4.8)(8) + (3.6)(15) = 92.4^(→ ) a = (√(4.8^2 +3.6^2 )) = (√(23.04+12.96)) = (√(36)) = 6 b = (√(8^2 +15^2 )) = (√(64+225)) = (√(289)) = 17 a.b = 6 . 17 = 102 cos AOB = ((a^→ .b^→ )/(a.b)) = ((92.4)/(102)) = 0.9059 = cos 25.06° ∴ ∠AOB = 25.06°

(26)OA=a=(4.83.6),OB=b=(815)a.b=(4.8)(8)+(3.6)(15)=92.4a=4.82+3.62=23.04+12.96=36=6b=82+152=64+225=289=17a.b=6.17=102cosAOB=a.ba.b=92.4102=0.9059=cos25.06°AOB=25.06°

Question Number 118277    Answers: 0   Comments: 0

(23) Let a^→ = ((( 7)),((24)) ) and b^→ = ((( 3)),((−4)) ) a^→ .b^→ = (7)(3) + (24)(−4) = 21−96 = −75 a = (√(7^2 +24^2 )) = (√(49+576)) = (√(625)) = 25 b = (√(3^2 +(−4)^2 )) = (√(9+16)) = (√(25)) = 5 a.b = 25 . 5 = 125 Let θ be the angle between a^→ and b^→ . cosθ = ((a^→ .b^→ )/(a.b)) = ((−75)/(125)) = −0.6 = cos126.87° ∴ θ = 126.87°

(23)Leta=(724)andb=(34)a.b=(7)(3)+(24)(4)=2196=75a=72+242=49+576=625=25b=32+(4)2=9+16=25=5a.b=25.5=125Letθbetheanglebetweenaandb.cosθ=a.ba.b=75125=0.6=cos126.87°θ=126.87°

Question Number 118275    Answers: 1   Comments: 1

Question Number 118263    Answers: 0   Comments: 0

Question Number 118227    Answers: 1   Comments: 0

If x = (√(42−(√(42−(√(42−...)))))) y = (√(x+(√(x+(√(x+...)))))) z=(√(y.(√(y.(√(y.(√(y...)))))))) . Find x+y+z .

Ifx=424242...y=x+x+x+...z=y.y.y.y....Findx+y+z.

Question Number 118196    Answers: 1   Comments: 0

solve in N: b^3 (2b^2 +2b+1)=18360

solveinN:b3(2b2+2b+1)=18360

Question Number 118193    Answers: 1   Comments: 0

Given A=n^2 −2n+2 , B=n^2 +2n+2 n ∈ N^∗ −{1}. Show that ∀ divisor of A which divise n can also divise 2. Show that all common divisor of A and B can divise 4n.

GivenA=n22n+2,B=n2+2n+2nN{1}.ShowthatdivisorofAwhichdivisencanalsodivise2.ShowthatallcommondivisorofAandBcandivise4n.

Question Number 118184    Answers: 2   Comments: 1

factorise x^4 +4

factorisex4+4

Question Number 118181    Answers: 1   Comments: 1

find all numbers >1 from N which their cube are <18360

findallnumbers>1fromNwhichtheircubeare<18360

Question Number 118180    Answers: 1   Comments: 0

show that if n is odd , n(n^2 +3) is even.

showthatifnisodd,n(n2+3)iseven.

Question Number 118172    Answers: 1   Comments: 0

Find the area of a rhombus with side 8 cm

Findtheareaofarhombuswithside8cm

Question Number 118023    Answers: 1   Comments: 0

..calculus.. x,y,z ∈R^+ and x^2 +y^2 +z^2 =1 find min_(x,y,z∈R^(+ ) ) ((((yz)/x)+((xz)/y)+((xy)/z)) )=? m.n.1970..

..calculus..x,y,zR+andx2+y2+z2=1findminx,y,zR+((yzx+xzy+xyz))=?m.n.1970..

Question Number 118011    Answers: 4   Comments: 0

Question Number 118002    Answers: 1   Comments: 0

Question Number 117984    Answers: 1   Comments: 0

If f(x) is a polynomial function satisfying the relation f(x)+f((1/x))=f(x)f((1/x)) for all 0≠x∈R and if f(2)=9, then f(6) is (A) 216 (B) 217 (C) 126 (D) 127

Iff(x)isapolynomialfunctionsatisfyingtherelationf(x)+f(1x)=f(x)f(1x)forall0xRandiff(2)=9,thenf(6)is(A)216(B)217(C)126(D)127

Question Number 117972    Answers: 2   Comments: 0

The number of surjections of {1,2,3,4} onto {x,y} is (A) 16 (B) 8 (C) 14 (D) 6

Thenumberofsurjectionsof{1,2,3,4}onto{x,y}is(A)16(B)8(C)14(D)6

Question Number 117934    Answers: 1   Comments: 0

Let f : [1,∞)→[2,∞) be the function defined by f(x)=x+(1/x) If g : [2,∞)→[1,∞), is a function such that (g○f)(x)=x for all x≥1. Show that g(t)=((t+(√(t^2 −4)))/2)

Letf:[1,)[2,)bethefunctiondefinedbyf(x)=x+1xIfg:[2,)[1,),isafunctionsuchthat(gf)(x)=xforallx1.Showthatg(t)=t+t242

Question Number 117828    Answers: 1   Comments: 0

1)((√3)−1)((√3)+1)=(√3)×(√3)−(√3)−1 =3−(√3)−1 =2−(√3) 2)(2x+(√3))(2x−(√3))=(2x)^2 −2x(√3)+2x(√3)−3 =4x^2 −3

1)(31)(3+1)=3×331=331=232)(2x+3)(2x3)=(2x)22x3+2x33=4x23

Question Number 117827    Answers: 0   Comments: 5

Question Number 117781    Answers: 1   Comments: 0

Log (cosβ) = p ⇒ cos β = 10^p ∴ secβ = (1/(cosβ)) = (1/(10^p )) = 10^(−p) ∴ Log (secβ) = Log 10^(−p) = −p Log 10 = −p

Log(cosβ)=pcosβ=10psecβ=1cosβ=110p=10pLog(secβ)=Log10p=pLog10=p

Question Number 117767    Answers: 1   Comments: 1

x^2 +y_ ^2 =a^2 (√(2 )) x^2 +y^2 =a^2 what is intersection Angle=?

x2+y2=a22x2+y2=a2whatisintersectionAngle=?

Question Number 117666    Answers: 0   Comments: 3

Question Number 117649    Answers: 1   Comments: 0

Let P(x) be a polynomial function of degree n such that P(k)=(k/(k+1)) for k=0,1,2,...,n. Then P(n+1) is equal to (A) −1 if n is even (B) 1 if n is odd (C) (n/(n+2)) if n is even (D) (n/(n+2)) if n is odd Which among the four proposals is/are correct ?

LetP(x)beapolynomialfunctionofdegreensuchthatP(k)=kk+1fork=0,1,2,...,n.ThenP(n+1)isequalto(A)1ifniseven(B)1ifnisodd(C)nn+2ifniseven(D)nn+2ifnisoddWhichamongthefourproposalsis/arecorrect?

Question Number 117603    Answers: 0   Comments: 0

Let f : R→R be a function satisfying the following : (a) f(−x)=−f(x) (b) f(x+1)=f(x)+1 (c) f((1/x))=((f(x))/x^2 ) for all x≠0 Show that (i)f(x)=x for all x,y∈R (ii) f(x+y)=f(x)+f(y) for all x,y∈R (iii) f(xy)=f(x)f(y) for all x,y∈R (iv) f((x/y))=((f(x))/(f(y))) for all x,y∈R with y≠0

Letf:RRbeafunctionsatisfyingthefollowing:(a)f(x)=f(x)(b)f(x+1)=f(x)+1(c)f(1x)=f(x)x2forallx0Showthat(i)f(x)=xforallx,yR(ii)f(x+y)=f(x)+f(y)forallx,yR(iii)f(xy)=f(x)f(y)forallx,yR(iv)f(xy)=f(x)f(y)forallx,yRwithy0

  Pg 225      Pg 226      Pg 227      Pg 228      Pg 229      Pg 230      Pg 231      Pg 232      Pg 233      Pg 234   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com