Question and Answers Forum |
AlgebraQuestion and Answers: Page 32 |
![]() |
![]() |
![]() |
Find: Ω = ∫_0 ^( (𝛑/2)) ((sin^2 x)/(2 cosx + 3 sinx)) dx = ? |
If a,b,c>0 and a^2 + b^2 + c^2 = abc Prove that: (a/(a^2 + bc)) + (b/(b^2 + ac)) + (c/(c^2 + ab)) ≤ (1/2) |
If a,b,c>0 and abc≥1 Prove that: a + b + c ≥ ((1+a)/(1+b)) + ((1+b)/(1+c)) + ((1+c)/(1+a)) |
if a+b+c=(1/(a+1))+(1/(b+2))+(1/(c+3))=0, find (a+1)^2 +(b+2)^2 +(c+3)^2 =? |
![]() |
![]() |
what is the decomposition into cycles with disjoints support of c^k , where c=(123...n) ? |
Question. (math analysis) (X ,d ) is a metric space and (p_n )_(n=1) ^∞ is a sequence in X. (p_n )_(n=1) ^( ∞) is cauchy if and only if lim_(N→∞) diam (E_N )=0. where , E_N = { p_N , p_(N+1) , ...} diam E:=sup{d(x,y)∣x,y ∈E } |
![]() |
Find: lim_(n→∞) ∫_0 ^( 1) n x^n e^x^2 dx = ? |
Let ∀x ∈ A → x ∈ R And card(A) > card N Prove that: card(A′) > card N |
If the roots of ax^2 + bx + c = 0 are one another′s cube then show that (b^2 − 2ac)^2 = ac(a + c)^2 . |
what is the decomposition into cycles with disjoints support of c^k , where c=(123...n) ? |
Quelle est la decomposition en cycles a support disjoints de c^k , ou c=(1 2 3 ... n) ? |
![]() |
If,f(x)= (√(2 + x)) + a (√(x − 1)) is monotone function . find the range of ” a ” |
Solve the equation: (x/(21))+(x/(77))+(x/(165))+(x/(285))=200 |
If 3cosx = 8sin(30° − x) Find: tanx = ? |
Find: Ω = ∫_0 ^( 2𝛑) ln (sinx + (√(1 + sin^2 x))) dx |
Prove that in any △ABC ((cotA cotB cotC)/(sinA sinB sinC)) ≤ (8/(27)) |
Prove that in any △ABC (1/(sinA)) + (1/(sinB)) + (1/(sinC)) ≤ (2/3) (cot(A/2) + cot(B/2) + cot(C/2)) |
If a , b ∈ R Then: a^2 + b^2 ≥ ab + (√((a^4 + b^4 )/2)) |
If (a + 1)(b + 1)(c + 1) = 8 Then: a^2 + b^2 + c^2 ≥ 3 |