Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 331

Question Number 31039    Answers: 0   Comments: 0

find the sum s_0 = C_n ^o +C_n ^4 +C_n ^8 +... s_1 = C_n ^1 +C_n ^5 +C_n ^9 +.... s_3 = C_n ^2 +C_n ^6 + C_n ^(10) +....

findthesums0=Cno+Cn4+Cn8+...s1=Cn1+Cn5+Cn9+....s3=Cn2+Cn6+Cn10+....

Question Number 31038    Answers: 0   Comments: 0

let give α ∈]−π ,π[ 1)prove that sin^2 α −2(1+cosα) =−4cos^4 ((α/2)) 2)solve inside C z^2 −2z sinα +2(1+cosα)=0 find the module and arg of the roots.

letgiveα]π,π[1)provethatsin2α2(1+cosα)=4cos4(α2)2)solveinsideCz22zsinα+2(1+cosα)=0findthemoduleandargoftheroots.

Question Number 31037    Answers: 0   Comments: 0

let θ∈[0,π] and Z=1+cosθ +isinθ Z^′ =cosθ +(1+sinθ)i find ∣ZZ^′ ∣ arg(ZZ^′ ) ∣(Z/Z^′ )∣ , arg((Z/Z^, )) , ∣Z−Z^, ∣ and arg(Z−Z^, ).

letθ[0,π]andZ=1+cosθ+isinθZ=cosθ+(1+sinθ)ifindZZarg(ZZ)ZZ,arg(ZZ,),ZZ,andarg(ZZ,).

Question Number 31036    Answers: 0   Comments: 0

solve inside C z^6 = (z^− )^2 .

solveinsideCz6=(z)2.

Question Number 31035    Answers: 0   Comments: 0

1) solve x^5 =1 2) if x_i are roots of this equation prove that Σ_i x_i =0 3)prove that cos(((2π)/5)) +cos(((4π)/5)) =−(1/2) 4)calculate cos(((4π)/5)) interms cos(((2π)/5)) then find its values.

1)solvex5=12)ifxiarerootsofthisequationprovethatixi=03)provethatcos(2π5)+cos(4π5)=124)calculatecos(4π5)intermscos(2π5)thenfinditsvalues.

Question Number 31034    Answers: 0   Comments: 0

1) solve inside C z^4 =6 2)sove inside C (((z+i)/(z−i)))^3 +(((z+i)/(z−i)))^2 +(((z+i)/(z−i))) +1=0

1)solveinsideCz4=62)soveinsideC(z+izi)3+(z+izi)2+(z+izi)+1=0

Question Number 31033    Answers: 0   Comments: 0

factorize p(x)=(1+ix)^n −e^(inθ) wth θ∈R.

factorizep(x)=(1+ix)neinθwthθR.

Question Number 31032    Answers: 0   Comments: 0

let give x_0 =0 ,y_0 =1 and {_(y_n =x_(n−1) +y_(n−1) ) ^(x_n =x_(n−1) −y_(n−1) ) for n≥1 let z_n =x_n +i y_n ∀n∈N 1)calculate z_0 ,z_1 and z_2 2)prove that ∀n∈N^ ,n≥1 z_n =(1+i)z_(n−1) find z_n then find the expression of x_n and y_n 3)let put S_n =z_0 +z_1 +....z_n s_n =x_0 +x_1 +...+x_n s_n ^′ =y_0 +y_1 +...+y_n find those sum interms of n.

letgivex0=0,y0=1and{yn=xn1+yn1xn=xn1yn1forn1letzn=xn+iynnN1)calculatez0,z1andz22)provethatnN,n1zn=(1+i)zn1findznthenfindtheexpressionofxnandyn3)letputSn=z0+z1+....znsn=x0+x1+...+xnsn=y0+y1+...+ynfindthosesumintermsofn.

Question Number 31031    Answers: 0   Comments: 0

1) solve inside C z^(12) =1 and give the solution at form r e^(iθ) 2)calculate 1+u +u^2 +... +u^n then find the solution of z∈C z^8 +z^4 +1=0

1)solveinsideCz12=1andgivethesolutionatformreiθ2)calculate1+u+u2+...+unthenfindthesolutionofzCz8+z4+1=0

Question Number 31023    Answers: 0   Comments: 0

Question Number 31018    Answers: 0   Comments: 1

Question Number 31003    Answers: 1   Comments: 0

Number of positive integers x for which f(x)=x^3 −8x^2 +20x−13 is a prime number are ?

Numberofpositiveintegersxforwhichf(x)=x38x2+20x13isaprimenumberare?

Question Number 30990    Answers: 1   Comments: 0

Question Number 30958    Answers: 1   Comments: 4

Question Number 30956    Answers: 1   Comments: 0

Question Number 30916    Answers: 1   Comments: 1

Question Number 30860    Answers: 1   Comments: 0

S= 3(1!)−4(2!)+5(3!)−6(4!)+.... .....−(2008)(2006!)+2007! Find value of S.

S=3(1!)4(2!)+5(3!)6(4!)+.........(2008)(2006!)+2007!FindvalueofS.

Question Number 30849    Answers: 0   Comments: 5

x^7 +x^6 +x^5 +x^4 +x^3 +x^2 +x+1=0 Σ_(k=1) ^7 [ℜ(x_k )]^2 = ? x_k = k^( th) root of the equation ℜ(x_k ) = real part of the root

x7+x6+x5+x4+x3+x2+x+1=07k=1[(xk)]2=?xk=kthrootoftheequation(xk)=realpartoftheroot

Question Number 30745    Answers: 0   Comments: 0

let U_n ={z∈C/z^n =1} simlify A_n = Σ_(α∈U_n ) (x+α)^n and B_n =Σ_(α∈ U_n ) (x−α)^n .

letUn={zC/zn=1}simlifyAn=αUn(x+α)nandBn=αUn(xα)n.

Question Number 30744    Answers: 0   Comments: 0

let p(x)= (x−1)^n −x^n +1 with n integr find n in ordre that p(x) have a double root.

letp(x)=(x1)nxn+1withnintegrfindninordrethatp(x)haveadoubleroot.

Question Number 30743    Answers: 0   Comments: 1

decompose inside R[x] p(x)=x^(2n+1) −1 then find Π_(k=1) ^n sin( ((kπ)/(2n+1))) .

decomposeinsideR[x]p(x)=x2n+11thenfindk=1nsin(kπ2n+1).

Question Number 30742    Answers: 0   Comments: 0

prove that ∀p ∈N it exist one polynomial Q_(2p) / sin(2p+1)θ=sin^(2p+1) θ Q_(2p) (cotanθ) and degQ_(2p) =2p 2) prove that Π_(k=1) ^p tan(((kπ)/(2p+1)))=(√(2p+1)) .

provethatpNitexistonepolynomialQ2p/sin(2p+1)θ=sin2p+1θQ2p(cotanθ)anddegQ2p=2p2)provethatk=1ptan(kπ2p+1)=2p+1.

Question Number 30739    Answers: 0   Comments: 0

let (u_n ) / u_1 =1−i and ∀p∈{2,3,...n} u_p =u_(p−1) j with j=e^(i((2π)/3)) 1)verify that u_1 +u_2 +u_3 =0 2)prove that ∀p∈ {4,5,...,n} u_p =u_(p−3) 3)find the value of S_n =Σ_(i=1) ^n u_i 4)calculate α_n = Σ_(p=0) ^(n−1) cos(−(π/4) +((2pπ)/3)) and β_n = Σ_(p=0) ^(n−1) sin(−(π/4) +((2pπ)/3)).

let(un)/u1=1iandp{2,3,...n}up=up1jwithj=ei2π31)verifythatu1+u2+u3=02)provethatp{4,5,...,n}up=up33)findthevalueofSn=i=1nui4)calculateαn=p=0n1cos(π4+2pπ3)andβn=p=0n1sin(π4+2pπ3).

Question Number 30627    Answers: 1   Comments: 0

Question Number 30600    Answers: 0   Comments: 0

let w_k =e^(i((2kπ)/n)) find A= Π_(k=0) ^(n−1) (a +bw_k ).

letwk=ei2kπnfindA=k=0n1(a+bwk).

Question Number 30599    Answers: 0   Comments: 1

decompose inside C(x) F= (1/((x−1)(x^n −1))) .

decomposeinsideC(x)F=1(x1)(xn1).

  Pg 326      Pg 327      Pg 328      Pg 329      Pg 330      Pg 331      Pg 332      Pg 333      Pg 334      Pg 335   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com