Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 344

Question Number 23334    Answers: 1   Comments: 3

Question Number 23323    Answers: 0   Comments: 1

Question Number 23250    Answers: 0   Comments: 0

If (1 + x)^n = C_0 + C_1 x + C_2 x^2 + C_3 x^3 + ... + C_n x^n , then prove that ΣΣ_(0≤i<j≤n) ((i/(^n C_i )) + (j/(^n C_j ))) = (n^2 /2)(Σ_(r=0) ^n (1/(^n C_r ))).

If(1+x)n=C0+C1x+C2x2+C3x3+...+Cnxn,thenprovethatΣΣ0i<jn(inCi+jnCj)=n22(nr=01nCr).

Question Number 23208    Answers: 1   Comments: 0

Is it possible to find how many real roots exist in the equation x^4 + ∣x∣ = 3 without find all the value of x?

Isitpossibletofindhowmanyrealrootsexistintheequationx4+x=3withoutfindallthevalueofx?

Question Number 23096    Answers: 0   Comments: 1

Solve: 3^(x ) = ((27)/x) + 18

Solve:3x=27x+18

Question Number 23000    Answers: 0   Comments: 0

Let n be a positive integer and p_1 , p_2 , ..., p_n be n prime numbers all larger than 5 such that 6 divides p_1 ^2 + p_2 ^2 + ... + p_n ^2 . Prove that 6 divides n.

Letnbeapositiveintegerandp1,p2,...,pnbenprimenumbersalllargerthan5suchthat6dividesp12+p22+...+pn2.Provethat6dividesn.

Question Number 22945    Answers: 0   Comments: 0

Question Number 22856    Answers: 0   Comments: 1

solve: sin(x)=2, x∈C

solve:sin(x)=2,xC

Question Number 22768    Answers: 1   Comments: 2

Question Number 22739    Answers: 0   Comments: 0

If (1 + x)^n = C_0 + C_1 x + C_2 x^2 + C_3 x^3 + ... + C_n x^n , Prove that ΣΣ_(0≤i<j≤n) (i + j)C_i C_j = n(2^(2n−1) − (1/2)^(2n) C_n )

If(1+x)n=C0+C1x+C2x2+C3x3+...+Cnxn,ProvethatΣΣ0i<jn(i+j)CiCj=n(22n1122nCn)

Question Number 22701    Answers: 2   Comments: 0

Question Number 22618    Answers: 1   Comments: 0

If (1 + x)^n = C_0 + C_1 x + C_2 x^2 + C_3 x^3 + ... + C_n x^n , prove that (2^2 /(1.2))C_0 + (2^3 /(2.3))C_1 + (2^4 /(3.4))C_2 + ... + (2^(n+2) /((n + 1)(n + 2)))C_n = ((3^(n+2) − 2n − 5)/((n + 1)(n + 2)))

If(1+x)n=C0+C1x+C2x2+C3x3+...+Cnxn,provethat221.2C0+232.3C1+243.4C2+...+2n+2(n+1)(n+2)Cn=3n+22n5(n+1)(n+2)

Question Number 22640    Answers: 0   Comments: 0

With usual notation, show that (C_0 /x) − (C_1 /(x+1)) + (C_2 /(x+2)) − .... + (−1)^n (C_n /(x+n))= ((n!)/(x(x + 1)(x + 2)....(x + n)))

Withusualnotation,showthatC0xC1x+1+C2x+2....+(1)nCnx+n=n!x(x+1)(x+2)....(x+n)

Question Number 22612    Answers: 2   Comments: 0

In the binomial expasion of (a − b)^5 , the sum of 2^(nd) and 3^(rd) term is zero, then (a/b) is

Inthebinomialexpasionof(ab)5,thesumof2ndand3rdtermiszero,thenabis

Question Number 22547    Answers: 1   Comments: 0

If α = (5/(2!3)) + ((5.7)/(3!3^2 )) + ((5.7.9)/(4!3^3 )) ,... then find the value of α^2 + 4α.

Ifα=52!3+5.73!32+5.7.94!33,...thenfindthevalueofα2+4α.

Question Number 22517    Answers: 0   Comments: 0

Find the coefficient of x in the expansion of [(√(1 + x^2 )) − x]^(−1) in ascending power of x when ∣x∣ < 1.

Findthecoefficientofxintheexpansionof[1+x2x]1inascendingpowerofxwhenx<1.

Question Number 22503    Answers: 1   Comments: 4

If (a + bx)^(−2) = (1/4) − 3x + ..., then (a, b) =

If(a+bx)2=143x+...,then(a,b)=

Question Number 22491    Answers: 1   Comments: 0

The coefficient of x^r in the expansion of (1 − 2x)^(−1/2) is (1) (((2r)!)/((r!)^2 )) (2) (((2r)!)/(2^r (r!)^2 )) (3) (((2r)!)/((r!)^2 2^(2r) )) (4) (((2r)!)/(2^r (r + 1)!(r − 1)!))

Thecoefficientofxrintheexpansionof(12x)1/2is(1)(2r)!(r!)2(2)(2r)!2r(r!)2(3)(2r)!(r!)222r(4)(2r)!2r(r+1)!(r1)!

Question Number 22474    Answers: 0   Comments: 0

Let R = (5(√5) + 11)^(2n+1) and f = R − [R], then prove that Rf = 4^(2n+1) .

LetR=(55+11)2n+1andf=R[R],thenprovethatRf=42n+1.

Question Number 22472    Answers: 0   Comments: 0

If x^x ∙y^y ∙z^z = x^y ∙y^z ∙z^x = x^z ∙y^x ∙z^y such that x, y and z are positive integers greater than 1, then which of the following cannot be true for any of the possible value of x, y and z? (1) xyz = 27 (2) xyz = 1728 (3) x + y + z = 32 (4) x + y + z = 12

Ifxxyyzz=xyyzzx=xzyxzysuchthatx,yandzarepositiveintegersgreaterthan1,thenwhichofthefollowingcannotbetrueforanyofthepossiblevalueofx,yandz?(1)xyz=27(2)xyz=1728(3)x+y+z=32(4)x+y+z=12

Question Number 22468    Answers: 0   Comments: 0

If a_r is the coefficient of x^r in the expansion (1 + x + x^2 )^n , then a_1 − 2a_2 + 3a_3 − ....... 2na_(2n) =

Ifaristhecoefficientofxrintheexpansion(1+x+x2)n,thena12a2+3a3.......2na2n=

Question Number 22463    Answers: 1   Comments: 0

Solve for real x: (1/([x])) + (1/([2x])) = (x) + (1/3), where [x] is the greatest integer less than or equal to x and (x) = x − [x], [e.g. [3.4] = 3 and (3.4) = 0.4].

Solveforrealx:1[x]+1[2x]=(x)+13,where[x]isthegreatestintegerlessthanorequaltoxand(x)=x[x],[e.g.[3.4]=3and(3.4)=0.4].

Question Number 29184    Answers: 1   Comments: 0

{ (((√(x^2 −4xy))+(√(y^2 +2xy+9))=10)),((x−y=7)) :} How many real roots of the equtions system?

{x24xy+y2+2xy+9=10xy=7Howmanyrealrootsoftheequtionssystem?

Question Number 22423    Answers: 0   Comments: 0

Prove that no three consecutive binomial coefficient can be in G.P. or H.P.

ProvethatnothreeconsecutivebinomialcoefficientcanbeinG.P.orH.P.

Question Number 22394    Answers: 0   Comments: 0

Prove that : ((^n C_0 )/n)−((^n C_1 )/(n+1))+((^n C_2 )/(n+2))−...+(−1)^n .((^n C_n )/(2n))=(1/(n.^(2n) C_n ))

Provethat:nC0nnC1n+1+nC2n+2...+(1)n.nCn2n=1n.2nCn

Question Number 22392    Answers: 0   Comments: 0

Show that the sum of odd coefficients in the expansion of (1 + 2x − 3x^2 )^(1025) is an even integer.

Showthatthesumofoddcoefficientsintheexpansionof(1+2x3x2)1025isaneveninteger.

  Pg 339      Pg 340      Pg 341      Pg 342      Pg 343      Pg 344      Pg 345      Pg 346      Pg 347      Pg 348   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com