Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 57

Question Number 194844    Answers: 1   Comments: 0

(x^2 +1)^2 +(x+3)^2 =(x^2 +ax+b)(x^2 +cx+d) Find a,b,c,d.

(x2+1)2+(x+3)2=(x2+ax+b)(x2+cx+d)Finda,b,c,d.

Question Number 194837    Answers: 2   Comments: 0

for x>0 find the minimum of the function f(x)=x^3 +(5/x).

forx>0findtheminimumofthefunctionf(x)=x3+5x.

Question Number 194851    Answers: 0   Comments: 1

Name Zainab Bibi BC200400692 Assignmeng No#2 Mth 621 solution.. a_n =(((n− )!)/((n+ )^2 )) a_(n+ ) =(((n+ − )!)/((n+ + )^2 ))=(((n)!)/((n+2)^2 )) by ratio test (a_(n+ ) /a_n )=((((n)!)/((n+2)))/(((n− )!)/((n+ )^2 )))=(((n)!)/((n+2)^2 ))×(((n+ )^2 )/((n+ )!)) lim_(n→∞) (a_(n+ ) /a_n )=lim_(n→∞) ((n(n− )!)/((n+2)^2 ))×(((n+ )^2 )/((n− )!)) ∵(n)!=n(n− )! lim_(n→∞) (a_(n+ ) /a_n )=lim_(n→∞) ((n(n+ )^2 )/((n+2)^2 ))=lim_(n→∞) ((n(n^2 +1+2n))/(n^2 +4+4n)) lim_(n→∞) (((n^3 +n+2n^2 ))/(n^2 +4+4n))=lim_(n→∞) (((1+(1/n^2 )+(2/n)))/((1/n)+(1/n^3 )+(4/n^2 ))) Divided by n^3 to numerator and denominator Now by Applying limit (((1+(1/∞^(2 ) )+(2/∞)))/((1/∞)+(4/∞^3 )+(4/∞^2 )))=((1+0+0)/(0+0+0))=(1/0)=∞ lim_(n→∞) (a_(n+1) /a_n )=∞

NameZainabBibiBC200400692You can't use 'macro parameter character #' in math modeMth621solution..an=(n)!(n+)2an+=(n+)!(n++)2=(n)!(n+2)2byratiotestan+an=(n)!(n+2)(n)!(n+)2=(n)!(n+2)2×(n+)2(n+)!limnan+an=limnn(n)!(n+2)2×(n+)2(n)!(n)!=n(n)!limnan+an=limnn(n+)2(n+2)2=limnn(n2+1+2n)n2+4+4nlimn(n3+n+2n2)n2+4+4n=limn(1+1n2+2n)1n+1n3+4n2Dividedbyn3tonumeratoranddenominatorNowbyApplyinglimit(1+12+2)1+43+42=1+0+00+0+0=10=limnan+1an=

Question Number 194809    Answers: 2   Comments: 0

If f(x)=ax^2 −5x+3 and g(x)=3x−3 intersection at points (1,h) and (3,t). Find

Iff(x)=ax25x+3andg(x)=3x3intersectionatpoints(1,h)and(3,t).Find

Question Number 194808    Answers: 0   Comments: 4

suppose a,b,c are positive real numbers prove the inequality (((a+b)/2))(((b+c)/2))(((c+a)/2))≥(((a+b+c)/3))(((abc)^2 ))^(1/3)

supposea,b,carepositiverealnumbersprovetheinequality(a+b2)(b+c2)(c+a2)(a+b+c3)(abc)23

Question Number 194791    Answers: 1   Comments: 0

x

x

Question Number 194779    Answers: 1   Comments: 4

If a divided by b gives q remaining r Then (a/b) = q,rrr... in base b+1

IfadividedbybgivesqremainingrThenab=q,rrr...inbaseb+1

Question Number 194756    Answers: 3   Comments: 0

b

b

Question Number 194710    Answers: 0   Comments: 21

let p be a prime number & let a_1 ,a_2 ,a_3 ,...,a_(p ) be integers show that , there exists an integer k such that the numbers a_1 +k, a_2 +k,a_3 +k,....,a_p +k produce at least (1/2)p distinct remainders when divided by p.

letpbeaprimenumber&leta1,a2,a3,...,apbeintegersshowthat,thereexistsanintegerksuchthatthenumbersa1+k,a2+k,a3+k,....,ap+kproduceatleast12pdistinctremainderswhendividedbyp.

Question Number 194695    Answers: 1   Comments: 0

Question Number 194648    Answers: 3   Comments: 3

Question Number 194637    Answers: 4   Comments: 1

x+y=1 x^2 +y^2 =2 x^(11) +y^(11) =?

x+y=1x2+y2=2x11+y11=?

Question Number 194636    Answers: 0   Comments: 3

Question Number 194634    Answers: 1   Comments: 0

a_1 ,a_2 ,a_3 ,....,a_n >0 such that a_i ∈[0,i] ∀ i∈{1,2,3,4,...,n} prove that 2^n .a_1 (a_1 +a_2 )...(a_1 +a_2 +...+a_n )≥(n+1)(a_1 ^2 .a_2 ^2 ...a_n ^2 )

a1,a2,a3,....,an>0suchthatai[0,i]i{1,2,3,4,...,n}provethat2n.a1(a1+a2)...(a1+a2+...+an)(n+1)(a12.a22...an2)

Question Number 194619    Answers: 1   Comments: 0

Find the sum of the roots of the equation: −3x^3 + 8x^2 − 6x − 7 = 0

Findthesumoftherootsoftheequation:3x3+8x26x7=0

Question Number 194612    Answers: 1   Comments: 2

Question Number 194610    Answers: 1   Comments: 0

where can I learn about multiple sigma notaions of dependent and independent variables something like this Σ_(1≤i) Σ_(<j) Σ_(<k≤1) (i+j+k)=λ find λ I want to know what to study

wherecanIlearnaboutmultiplesigmanotaionsofdependentandindependentvariablessomethinglikethis1i<j<k1(i+j+k)=λfindλIwanttoknowwhattostudy

Question Number 194586    Answers: 1   Comments: 2

abc = e^3 + d^3 + f^3 edf = a^3 + b^3 + c^3 find: abc and edf

abc=e3+d3+f3edf=a3+b3+c3find:abcandedf

Question Number 194579    Answers: 2   Comments: 0

if u_n =(1/( (√5)))[(((1+(√5))/2))^n −(((1−(√5))/2))^n ] then u_(n+1) =u_n +u_(n−1) ? ; n=0,1,2,..

ifun=15[(1+52)n(152)n]thenun+1=un+un1?;n=0,1,2,..

Question Number 194573    Answers: 0   Comments: 0

Question Number 194559    Answers: 2   Comments: 0

repeat question Shiw that : Σ_(i=1) ^n ((1/(2i−1))−(1/(2i)))=Σ_(i=1) ^n (1/(n+i)) ?

repeatquestionShiwthat:ni=1(12i112i)=ni=11n+i?

Question Number 194526    Answers: 2   Comments: 0

((f(x+1))/(f(x)))=x^(2 ) f(x)=? ((f(6))/(f(3)))=?

f(x+1)f(x)=x2f(x)=?f(6)f(3)=?

Question Number 194522    Answers: 7   Comments: 0

Question Number 194509    Answers: 2   Comments: 0

Question Number 194491    Answers: 1   Comments: 0

x=(√(4+(√(5(√3) +5(√(48−10(√(7+4(√3))))))))) determinant (((2x−1=?)))

x=4+53+548107+432x1=?

Question Number 194455    Answers: 1   Comments: 0

  Pg 52      Pg 53      Pg 54      Pg 55      Pg 56      Pg 57      Pg 58      Pg 59      Pg 60      Pg 61   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com