Question and Answers Forum |
AlgebraQuestion and Answers: Page 57 |
(x^2 +1)^2 +(x+3)^2 =(x^2 +ax+b)(x^2 +cx+d) Find a,b,c,d. |
for x>0 find the minimum of the function f(x)=x^3 +(5/x). |
Name Zainab Bibi BC200400692 Assignmeng No#2 Mth 621 solution.. a_n =(((n− )!)/((n+ )^2 )) a_(n+ ) =(((n+ − )!)/((n+ + )^2 ))=(((n)!)/((n+2)^2 )) by ratio test (a_(n+ ) /a_n )=((((n)!)/((n+2)))/(((n− )!)/((n+ )^2 )))=(((n)!)/((n+2)^2 ))×(((n+ )^2 )/((n+ )!)) lim_(n→∞) (a_(n+ ) /a_n )=lim_(n→∞) ((n(n− )!)/((n+2)^2 ))×(((n+ )^2 )/((n− )!)) ∵(n)!=n(n− )! lim_(n→∞) (a_(n+ ) /a_n )=lim_(n→∞) ((n(n+ )^2 )/((n+2)^2 ))=lim_(n→∞) ((n(n^2 +1+2n))/(n^2 +4+4n)) lim_(n→∞) (((n^3 +n+2n^2 ))/(n^2 +4+4n))=lim_(n→∞) (((1+(1/n^2 )+(2/n)))/((1/n)+(1/n^3 )+(4/n^2 ))) Divided by n^3 to numerator and denominator Now by Applying limit (((1+(1/∞^(2 ) )+(2/∞)))/((1/∞)+(4/∞^3 )+(4/∞^2 )))=((1+0+0)/(0+0+0))=(1/0)=∞ lim_(n→∞) (a_(n+1) /a_n )=∞ |
If f(x)=ax^2 −5x+3 and g(x)=3x−3 intersection at points (1,h) and (3,t). Find |
suppose a,b,c are positive real numbers prove the inequality (((a+b)/2))(((b+c)/2))(((c+a)/2))≥(((a+b+c)/3))(((abc)^2 ))^(1/3) |
x |
If a divided by b gives q remaining r Then (a/b) = q,rrr... in base b+1 |
b |
let p be a prime number & let a_1 ,a_2 ,a_3 ,...,a_(p ) be integers show that , there exists an integer k such that the numbers a_1 +k, a_2 +k,a_3 +k,....,a_p +k produce at least (1/2)p distinct remainders when divided by p. |
⇃ |
![]() |
x+y=1 x^2 +y^2 =2 x^(11) +y^(11) =? |
![]() |
a_1 ,a_2 ,a_3 ,....,a_n >0 such that a_i ∈[0,i] ∀ i∈{1,2,3,4,...,n} prove that 2^n .a_1 (a_1 +a_2 )...(a_1 +a_2 +...+a_n )≥(n+1)(a_1 ^2 .a_2 ^2 ...a_n ^2 ) |
Find the sum of the roots of the equation: −3x^3 + 8x^2 − 6x − 7 = 0 |
![]() |
where can I learn about multiple sigma notaions of dependent and independent variables something like this Σ_(1≤i) Σ_(<j) Σ_(<k≤1) (i+j+k)=λ find λ I want to know what to study |
abc = e^3 + d^3 + f^3 edf = a^3 + b^3 + c^3 find: abc and edf |
if u_n =(1/( (√5)))[(((1+(√5))/2))^n −(((1−(√5))/2))^n ] then u_(n+1) =u_n +u_(n−1) ? ; n=0,1,2,.. |
![]() |
repeat question Shiw that : Σ_(i=1) ^n ((1/(2i−1))−(1/(2i)))=Σ_(i=1) ^n (1/(n+i)) ? |
((f(x+1))/(f(x)))=x^(2 ) f(x)=? ((f(6))/(f(3)))=? |
![]() |
![]() |
x=(√(4+(√(5(√3) +5(√(48−10(√(7+4(√3))))))))) determinant (((2x−1=?))) |
![]() |