Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1025

Question Number 110480    Answers: 0   Comments: 0

Question Number 110471    Answers: 1   Comments: 0

the sum of all x values (x^2 −6x+9)^((x−3)/(x−1)) = (x−3)^((x−4))

thesumofallxvalues(x26x+9)x3x1=(x3)(x4)

Question Number 110463    Answers: 0   Comments: 2

Find the gcd(n−1,n+1)

Findthegcd(n1,n+1)

Question Number 110467    Answers: 2   Comments: 1

Question Number 110460    Answers: 0   Comments: 0

Find all continuous real function f such that f(ln(x+y))=f(sin(xy))+f(cos(y/x)) for all x,y∈R^+ .

Findallcontinuousrealfunctionfsuchthatf(ln(x+y))=f(sin(xy))+f(cos(y/x))forallx,yR+.

Question Number 110456    Answers: 1   Comments: 0

If (f(x).g(x))′ = f(x)′ . g(x)′ find the function of f(x) .

If(f(x).g(x))=f(x).g(x)findthefunctionoff(x).

Question Number 110451    Answers: 1   Comments: 0

calculate U_n =∫_([(1/n),n[^2 ) (x^2 −y^2 )e^(−x^2 −y^2 ) dxdy and lim_(n→+∞) U_n

calculateUn=[1n,n[2(x2y2)ex2y2dxdyandlimn+Un

Question Number 110450    Answers: 1   Comments: 0

find ∫∫_([0,1]^2 ) ln(x^2 +3y^2 ) e^(−x^2 −3y^2 ) dxdy

find[0,1]2ln(x2+3y2)ex23y2dxdy

Question Number 110449    Answers: 2   Comments: 0

find lim_(x→0) ((arctan(x−sinx)−arctan(1−cosx))/x^2 )

findlimx0arctan(xsinx)arctan(1cosx)x2

Question Number 110448    Answers: 1   Comments: 0

calculate ∫_(−∞) ^(+∞) ((cos(2x))/((x^2 −4i)^3 ))dx (i=(√(−1)))

calculate+cos(2x)(x24i)3dx(i=1)

Question Number 110447    Answers: 1   Comments: 0

calculate ∫_(−∞) ^(+∞) (dx/((x^2 −ix +1)^2 )) (i=(√(−1)))

calculate+dx(x2ix+1)2(i=1)

Question Number 110440    Answers: 1   Comments: 0

Given lim_(x→0) (f(x)+(1/(f(x)))) = 2 , find the value of lim_(x→0) f(x).

Givenlimx0(f(x)+1f(x))=2,findthevalueoflimx0f(x).

Question Number 110436    Answers: 2   Comments: 0

If 2f(x) + f((1/x)) = 3x what is f(x)

If2f(x)+f(1x)=3xwhatisf(x)

Question Number 110434    Answers: 1   Comments: 1

The product of the four terms of an increasing arithmetic progression is a, their sum is b, and the sum of their reciprocal is c. Suppose that a,b,c form a geometric progression whose product is 8000, find the sum of the first and fourth term.

Theproductofthefourtermsofanincreasingarithmeticprogressionisa,theirsumisb,andthesumoftheirreciprocalisc.Supposethata,b,cformageometricprogressionwhoseproductis8000,findthesumofthefirstandfourthterm.

Question Number 110425    Answers: 2   Comments: 3

Which of the following is not a factor of x^6 −56x+55 A. x−1 B. x^2 −x+5 C. x^3 +2x^2 −2x−11 D. x^4 +x^3 +4x^2 −9x+11 E. x^5 +x^4 +x^3 +x^2 +x−55 Please show all workings clearly. Thanks.

Whichofthefollowingisnotafactorofx656x+55A.x1B.x2x+5C.x3+2x22x11D.x4+x3+4x29x+11E.x5+x4+x3+x2+x55Pleaseshowallworkingsclearly.Thanks.

Question Number 110420    Answers: 1   Comments: 0

Prove that x^5 −3x^4 −17x^3 −x^2 −3x+17 cannot be factorized completely over the set of polynomials with integral coefficients.

Provethatx53x417x3x23x+17cannotbefactorizedcompletelyoverthesetofpolynomialswithintegralcoefficients.

Question Number 110419    Answers: 1   Comments: 2

Let t be a root of x^3 −3x+1=0, if ((t^2 +pt+1)/(t^2 −t+1)) can be written as t+c for some p,c ∈ Z, then p−c equals?

Lettbearootofx33x+1=0,ift2+pt+1t2t+1canbewrittenast+cforsomep,cZ,thenpcequals?

Question Number 110410    Answers: 0   Comments: 0

Question Number 110403    Answers: 0   Comments: 1

if W represents the Runesky determinant of the two independent solutions linearly (y_1 ,y_2 )of the equation y^(′′) +p(x)y^′ +Q(x)=0 then demonstrate that W satisfies the differential equation (W^( ′) +p(x)W=0) and solve this equation to qet W ? help me sir please

ifWrepresentstheRuneskydeterminantofthetwoindependentsolutionslinearly(y1,y2)oftheequationy+p(x)y+Q(x)=0thendemonstratethatWsatisfiesthedifferentialequation(W+p(x)W=0)andsolvethisequationtoqetW?helpmesirplease

Question Number 110399    Answers: 0   Comments: 5

The identity 2[16a^4 +81b^4 +c^4 ]=[4a^2 +9b^2 +c^2 ]^2 cannot result from which of the following equations? A. 6b=4a+2c B. 6a=9b+3c C. 6b=−4a+2c D.c= −2a−3b E. 6c=2b+3a

Theidentity2[16a4+81b4+c4]=[4a2+9b2+c2]2cannotresultfromwhichofthefollowingequations?A.6b=4a+2cB.6a=9b+3cC.6b=4a+2cD.c=2a3bE.6c=2b+3a

Question Number 110395    Answers: 0   Comments: 5

prove to ealier problem of ∫_0 ^1 ∫_0 ^1 ((tanh^(−1) ((x)^(1/4) )tanh^(−1) ((y)^(1/4) ))/(x(√y)))dxdy=π^2 solution let I=∫_0 ^1 ((tanh^(−1) ((x)^(1/4) ))/x)dx∫_0 ^1 ((tanh^(−1) ((y)^(1/4) ))/(√y))dy=A.B let m=x^(1/4) and dx=4m^3 A=∫_0 ^1 ((tanh^(−1) (m))/m^4 )×4m^3 dm=4∫_0 ^1 ((tanh^(−1) (m))/m)dm but series of tanh^(−1) (m)=Σ_(k=0) ^∞ (m^(2k+1) /(2k+1)) A=4Σ_(k=0) ^∞ (1/(2k+1))∫_0 ^1 (m^(2k+1) /m)dm=4Σ_(k=o) ^∞ (1/(2k+1))∫_0 ^1 m^(2k) dm A=4Σ_(k=0) ^∞ (1/((2k+1)^2 ))=4×(1/2)Σ_(k=−∞) ^∞ (1/((2k+1)^2 )) recall that Σ_(n=−∞) ^∞ (1/((an+1)^m ))=−(π/((a)^m ))lim_(z→−(1/a) ) (1/((m−1)!))(d^((m−1)) /dz^((m−1)) )[cot(πz)] ∵A=2[−(π/((2)^2 ))lim_(z→−(1/2)) (1/((2−1)!))(d/dz)[cot(πz)] A=−(π/2)lim_(z→−(1/2)) [−πcosec^2 (−(π/2))]=(π^2 /2).....(1) then B=∫_0 ^1 ((tanh^(−1) ((y)^(1/4) ))/(√y))dy let n=y^(1/4) and dy=4n^3 B=∫_0 ^1 ((tanh^(−1) (n))/n^2 )×4n^3 dn=4∫_0 ^1 ntanh^(−1) (n)dn B=4Σ_(k=0) ^∞ (1/(2k+1))∫_0 ^1 n^(2k+2) dn=4Σ_(k=0) ^∞ (1/((2k+1)(2k+3))) B=4×(1/2)Σ_(k=0) ^∞ ((1/(2k+1))−(1/(2k+3))) B=2lim_(k→∞) (1−(1/3)+(1/3)−(1/5)+(1/5).......+(1/(2k+1)))=2.....(2) the series is telescoping but I=A×B=(π^2 /2)×2=π^2 ..............(3) ∫_0 ^1 ∫_0 ^1 ((tanh^(−1) ((x)^(1/4) )tanh^(−1) ((y)^(1/4) ))/(x(√y)))dxdy=π^2 Q.E.D by mathdave(28/08/2020)

provetoealierproblemof0101tanh1(x4)tanh1(y4)xydxdy=π2solutionletI=01tanh1(x4)xdx01tanh1(y4)ydy=A.Bletm=x14anddx=4m3A=01tanh1(m)m4×4m3dm=401tanh1(m)mdmbutseriesoftanh1(m)=k=0m2k+12k+1A=4k=012k+101m2k+1mdm=4k=o12k+101m2kdmA=4k=01(2k+1)2=4×12k=1(2k+1)2recallthatn=1(an+1)m=π(a)mlimz1a1(m1)!d(m1)dz(m1)[cot(πz)]A=2[π(2)2limz121(21)!ddz[cot(πz)]A=π2limz12[πcosec2(π2)]=π22.....(1)thenB=01tanh1(y4)ydyletn=y14anddy=4n3B=01tanh1(n)n2×4n3dn=401ntanh1(n)dnB=4k=012k+101n2k+2dn=4k=01(2k+1)(2k+3)B=4×12k=0(12k+112k+3)B=2limk(113+1315+15.......+12k+1)=2.....(2)theseriesistelescopingbutI=A×B=π22×2=π2..............(3)0101tanh1(x4)tanh1(y4)xydxdy=π2Q.E.Dbymathdave(28/08/2020)

Question Number 110385    Answers: 0   Comments: 3

Question Number 110374    Answers: 2   Comments: 0

If P(x) is a polynomial whose sum of coefficients is 3 and P(x) can be factorised into two polynomials Q(x),R(x) with integer coefficients, the sum of the coefficients Q(x)^2 +R(x)^2 is

IfP(x)isapolynomialwhosesumofcoefficientsis3andP(x)canbefactorisedintotwopolynomialsQ(x),R(x)withintegercoefficients,thesumofthecoefficientsQ(x)2+R(x)2is

Question Number 110367    Answers: 2   Comments: 0

Question Number 110365    Answers: 3   Comments: 0

Question Number 110359    Answers: 1   Comments: 0

Let f(x)=∣x−2∣+∣x−4∣−∣2x−6∣, for 2≤x≤8. The sum of the largest and smallest values of f(x) is

Letf(x)=∣x2+x42x6,for2x8.Thesumofthelargestandsmallestvaluesoff(x)is

  Pg 1020      Pg 1021      Pg 1022      Pg 1023      Pg 1024      Pg 1025      Pg 1026      Pg 1027      Pg 1028      Pg 1029   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com