Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 104

Question Number 206858    Answers: 2   Comments: 0

prove that H_n =∫_0 ^1 ((t^n −1)/(t−1))dt

provethatHn=10tn1t1dt

Question Number 206848    Answers: 1   Comments: 1

Question Number 206845    Answers: 1   Comments: 3

Find: ((∞!)/∞^∞ ) = ?

Find:!=?

Question Number 206839    Answers: 1   Comments: 0

Question Number 206838    Answers: 0   Comments: 0

Question Number 206837    Answers: 0   Comments: 0

Question Number 206833    Answers: 3   Comments: 0

Question Number 206830    Answers: 0   Comments: 0

c = (√((∫_a_0 ^a_1 (√(1+[f′(x)]^2 ))dx)^2 +(∫_b_0 ^b_1 (√(1+[f′(x)]^2 ))dx)^2 )) c = (√(L_1 ^2 +L_2 ^2 ))

c=(a0a11+[f(x)]2dx)2+(b0b11+[f(x)]2dx)2c=L12+L22

Question Number 206829    Answers: 0   Comments: 1

∮(x/(x+2))dx^2 is wrong?

xx+2dx2iswrong?

Question Number 206827    Answers: 0   Comments: 1

log (x) = sin (x) x = ?

log(x)=sin(x)x=?

Question Number 211180    Answers: 1   Comments: 0

Question Number 206808    Answers: 2   Comments: 0

lim_(x→0) ((10^x −1)/x^(10) )

limx010x1x10

Question Number 206806    Answers: 0   Comments: 0

Given is a square with side length 15. We need to find exactly 17 smaller squares to fill the big one. How many solutions are possible? (Note: it′s not enough to find squares with the sum of their areas being 225, they must fit into the 15×15 square. Example with 3 squares: 2×2+5×5+14×14=225 but you cannot fit these in a 15×15 square)

Givenisasquarewithsidelength15.Weneedtofindexactly17smallersquarestofillthebigone.Howmanysolutionsarepossible?(Note:itsnotenoughtofindsquareswiththesumoftheirareasbeing225,theymustfitintothe15×15square.Examplewith3squares:2×2+5×5+14×14=225butyoucannotfittheseina15×15square)

Question Number 206805    Answers: 2   Comments: 0

Question Number 206804    Answers: 2   Comments: 0

Question Number 206795    Answers: 0   Comments: 3

Question Number 206794    Answers: 1   Comments: 0

help me... ∫_0 ^∞ ((sin(t)ln(t))/t)e^(−t) dt

helpme...0sin(t)ln(t)tetdt

Question Number 206787    Answers: 0   Comments: 1

Question Number 206789    Answers: 1   Comments: 0

Question Number 206788    Answers: 1   Comments: 0

Question Number 206783    Answers: 1   Comments: 1

Question Number 206781    Answers: 0   Comments: 0

Question Number 206779    Answers: 2   Comments: 0

Question Number 206773    Answers: 0   Comments: 3

∫_0 ^∞ (e^(−x^2 ) /((x^2 +(1/2))^2 ))dx= I^2 =∫∫_( D) (e^(−x^2 −y^2 ) /((x^2 +(1/2))^2 (y^2 +(1/2))^2 ))dA x=rcos(θ) y=rsin(θ) J=∣((∂(x,y))/(∂(r,θ)))∣drdθ=rdrdθ ∫∫_( D) ((re^(−r^2 ) )/((r^2 cos^2 (θ)+(1/2))^2 (r^2 sin^2 (θ)+(1/2))^2 ))drdθ

0ex2(x2+12)2dx=I2=Dex2y2(x2+12)2(y2+12)2dAx=rcos(θ)y=rsin(θ)J=∣(x,y)(r,θ)drdθ=rdrdθDrer2(r2cos2(θ)+12)2(r2sin2(θ)+12)2drdθ

Question Number 206764    Answers: 3   Comments: 0

Question Number 206754    Answers: 1   Comments: 0

find ∫_0 ^1 (√(1−(√x)))ln^2 (x)dx

find011xln2(x)dx

  Pg 99      Pg 100      Pg 101      Pg 102      Pg 103      Pg 104      Pg 105      Pg 106      Pg 107      Pg 108   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com