Question and Answers Forum |
AllQuestion and Answers: Page 115 |
![]() |
((exercice )/) prouver ā«_0 ^š ā«_0 ^x sin((x^2 /š))dxdy=š ...............prof cedric junior........... |
If , f(x) = { (( 2^(2x) ā log_3 ( x+3 ) ; x ā„5)),(( f (1+ x ) ā4 ; x < 5)) :} ā f (0 )= ? |
![]() |
ā«((xāx^2 ))^(1/3) dx |
f(x) = x^3 ā 16x^2 ā 57x +1 f(a)= 0 f(b)=0 f(c)=0 (a)^(1/5) + ((b ))^(1/5) + ((c ))^(1/5) = ? |
![]() |
For z = a ā bi If (ā£zā£ ā z)ā(ā£zā£ + z^(ā) ) = 4bi Find ā£zā£ = ? |
How Can derive LambertW(z) in the Form of integral??? W(z)=(1/Ļ)ā«_0 ^( Ļ) ln(1+((zāsin(t))/t)e^(tācot(t)) )dt , zā[ā(1/e),ā) Or Similar to the example.LambertW(z) How other Functions can be Derived in Integral Form |
find the value of I=ā«_0 ^(+ā) ln(1+e^(āx) )dx nowing that Ī£_(n=1) ^(+ā) (1/n^2 )=(Ļ^2 /6) |
how to convert 31230 in base 60? pls help |
lim_(nāā) n^(ā3/2) [(n+1)^((n+1)) (n+2)^((n+2)) ...(2n)^(2n) ]^(1/n^2 ) = ? |
![]() |
lim_(nāā) n^(ā3/2) [(n+1)^((n+1)) (n+2)^((n+2)) ...(2n)^(2n) ]^(1/n^2 ) = ? |
If a = (1/2^2 ) + (1/3^2 ) + ... + (1/(100^2 )) b = 0,99 Prove that: a < b |
In a regular pentagon PQRST , PR intersects QS at O. Calculate ROS? |
![]() |
![]() |
![]() |
![]() |
![]() |
solve for xāC 3^(2ix) ā3^(ix) 2+5=0 |
solve for x x^2 ā10āxā+((57)/4)=0 |
solve for xā yā§yā zā§zā x (exact solutions required) (ā((ā3+4i)x))=y (ā((ā3+4i)y))=z (ā((ā3+4i)z))=x |
![]() |
Prove that: (1/3^3 ) + (1/4^3 ) + ... + (1/n^3 ) < (1/(12)) |
Pg 110 Pg 111 Pg 112 Pg 113 Pg 114 Pg 115 Pg 116 Pg 117 Pg 118 Pg 119 |