Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1384

Question Number 67525    Answers: 0   Comments: 3

let a>b>0 calculate ∫_0 ^(2π) (dx/((a+bsinx)^2 ))

leta>b>0calculate02πdx(a+bsinx)2

Question Number 67524    Answers: 0   Comments: 1

prove that ∀z ∈C we have sinz =z Π_(n=1) ^∞ (1−(z^2 /(n^2 π^2 )))

provethatzCwehavesinz=zn=1(1z2n2π2)

Question Number 67522    Answers: 0   Comments: 0

let z from C−Z prove that (π/(sin(πz))) =(1/z) +Σ_(n=1) ^∞ (((−1)^n 2z)/(z^2 −n^2 )) and ((πcos(πz))/(sin(πz))) =(1/z) +Σ_(n=1) ^∞ ((2z)/(z^2 −n^2 ))

letzfromCZprovethatπsin(πz)=1z+n=1(1)n2zz2n2andπcos(πz)sin(πz)=1z+n=12zz2n2

Question Number 67521    Answers: 0   Comments: 0

calculate A(x) =Σ_(n=1) ^∞ (((−1)^n cos(nx))/n) and B(x) =Σ_(n=1) ^∞ (((−1)^n sin(nx))/n)

calculateA(x)=n=1(1)ncos(nx)nandB(x)=n=1(1)nsin(nx)n

Question Number 67520    Answers: 0   Comments: 0

let f(x,z) =((z e^(xz) )/(e^z −1)) (x and z from C) 1) prove that f(x,z) =Σ_(n=0) ^∞ B_n (x)(z^n /(n!)) with B_n (x) is a unitaire polynome with degre n determine B_n (x) interms of B_n (number of bernoulli) 2)prove that B _n^′ (x)=nB_(n−1) (x) B_n (x+1)−B_n (x) =nx^(n−1) prove that f(x,z)=f(1−x,−z) and B_n (1−x) =(−1)^n B_n (x)

letf(x,z)=zexzez1(xandzfromC)1)provethatf(x,z)=n=0Bn(x)znn!withBn(x)isaunitairepolynomewithdegrendetermineBn(x)intermsofBn(numberofbernoulli)2)provethatBn(x)=nBn1(x)Bn(x+1)Bn(x)=nxn1provethatf(x,z)=f(1x,z)andBn(1x)=(1)nBn(x)

Question Number 67519    Answers: 0   Comments: 0

if (z/(e^z −1)) =Σ_(n=0) ^∞ B_n (z^n /(n!)) 1) calculate B_0 ,B_1 ,B_2 ,B_3 ,B_4 2)prove that z→(1/(e^z −1))+(1/2) is a odd function conclude that B_(2n+1) =0 for n≥1

ifzez1=n=0Bnznn!1)calculateB0,B1,B2,B3,B42)provethatz1ez1+12isaoddfunctionconcludethatB2n+1=0forn1

Question Number 67518    Answers: 1   Comments: 1

if z =x+iy find lnz interms of x and y

ifz=x+iyfindlnzintermsofxandy

Question Number 67517    Answers: 0   Comments: 0

let z ∈C and ∣z∣<1 prove that (z/(1−z^2 )) +(z^2 /(1−z^4 )) +.....+(z^2^n /(1−z^2^(n+1) ))+...=(z/(1−z)) (z/(1+z)) +((2z^2 )/(1+z^2 )) +....+((2^n z^2^n )/(1+z^2^n )) +....=(z/(1−z))

letzCandz∣<1provethatz1z2+z21z4+.....+z2n1z2n+1+...=z1zz1+z+2z21+z2+....+2nz2n1+z2n+....=z1z

Question Number 67516    Answers: 2   Comments: 2

Question Number 67514    Answers: 1   Comments: 1

Question Number 67513    Answers: 0   Comments: 0

∫x^(n ) lnx/n^x dx

xnlnx/nxdx

Question Number 67501    Answers: 2   Comments: 2

Show that 1n^3 + 2n + 3n^2 is divisible by 2 and 3 for all positive integers n.

Showthat1n3+2n+3n2isdivisibleby2and3forallpositiveintegersn.

Question Number 67495    Answers: 0   Comments: 2

Question Number 67492    Answers: 0   Comments: 1

please check my comment to qu. 67471 I′ve been confusing myself...

pleasecheckmycommenttoqu.67471Ivebeenconfusingmyself...

Question Number 67482    Answers: 0   Comments: 1

I have tried to solve Q#67299 Please see and give critical remarks

You can't use 'macro parameter character #' in math modePleaseseeandgivecriticalremarks

Question Number 67471    Answers: 0   Comments: 4

Evaluate:∫(√(x(√(x+1)))) dx

Evaluate:xx+1dx

Question Number 67467    Answers: 0   Comments: 0

Find f(x)=∫_0 ^∞ (( tlnt)/((1+t^2 )^x )) dt

Findf(x)=0tlnt(1+t2)xdt

Question Number 67466    Answers: 0   Comments: 0

let consider for all n≥1 the real (t)_n =t(t+1).....(t+n−1) Find L_n = ∫_0 ^∞ (((t)_1 )/((t)_(n+1) )) dt

letconsiderforalln1thereal(t)n=t(t+1).....(t+n1)FindLn=0(t)1(t)n+1dt

Question Number 67465    Answers: 0   Comments: 4

let consider a function g defined by g(a)=∫_0 ^1 (dx/(√((1−x)(1+ax)))) Give the defined Domain of g and simplify g.

letconsiderafunctiongdefinedbyg(a)=01dx(1x)(1+ax)GivethedefinedDomainofgandsimplifyg.

Question Number 67464    Answers: 1   Comments: 0

prove Cos(((2π)/7))+Cos(((4π)/7))+Cos(((8π)/7))=−(1/2)

proveCos(2π7)+Cos(4π7)+Cos(8π7)=12

Question Number 67463    Answers: 1   Comments: 3

Find Find K=∫_0 ^(π/2) (√(tanθ)) dθ

FindFindK=0π2tanθdθ

Question Number 67462    Answers: 0   Comments: 2

Calculate when a,b are positive reals f(a,b)= ∫_0 ^1 ((t^a −t^b )/(lnt)) dt

Calculatewhena,barepositiverealsf(a,b)=01tatblntdt

Question Number 67461    Answers: 0   Comments: 0

find the value of Σ_(p=0) ^∞ (((−1)^p )/((2p+1)^2 ))

findthevalueofp=0(1)p(2p+1)2

Question Number 67454    Answers: 0   Comments: 2

Question Number 67481    Answers: 0   Comments: 2

p is a prime number such that (1+p)^p ≡2[7] find all k such that p≡k[42]

pisaprimenumbersuchthat(1+p)p2[7]findallksuchthatpk[42]

Question Number 67431    Answers: 1   Comments: 1

  Pg 1379      Pg 1380      Pg 1381      Pg 1382      Pg 1383      Pg 1384      Pg 1385      Pg 1386      Pg 1387      Pg 1388   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com