Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1386

Question Number 67307    Answers: 1   Comments: 1

Question Number 67299    Answers: 2   Comments: 5

G(x)= (x+1)(x+3)Q(x) + px +q a) Given that G(x) leaves a remainder of 8 and −24 when divided by (x+1) and (x+3) respectively,find the remainder when G(x) is divided by (x+1)(x+3). b) Given that x+2 is a factor of G(x) and that the graph of G(x) passes through the point with coordinates (0,6) find G(x)

G(x)=(x+1)(x+3)Q(x)+px+qa)GiventhatG(x)leavesaremainderof8and24whendividedby(x+1)and(x+3)respectively,findtheremainderwhenG(x)isdividedby(x+1)(x+3).b)Giventhatx+2isafactorofG(x)andthatthegraphofG(x)passesthroughthepointwithcoordinates(0,6)findG(x)

Question Number 67333    Answers: 0   Comments: 0

evaluate Σ_(n=0) ^(+∞) (1/((1+8n)^2 ))

evaluate+n=01(1+8n)2

Question Number 67281    Answers: 1   Comments: 6

Question Number 67337    Answers: 1   Comments: 0

m(p+1)=a ((q(p+1))/(r+1))=b & ((p(p+1))/(q+1))=c and ((r(p+1))/(m+1))=d find either of p,q,r,m in terms of a,b,c,d.

m(p+1)=aq(p+1)r+1=b&p(p+1)q+1=candr(p+1)m+1=dfindeitherofp,q,r,mintermsofa,b,c,d.

Question Number 67336    Answers: 0   Comments: 3

If (dy/dx) = e^(−t) (dy/dt) , find (d^2 y/dx^2 )

Ifdydx=etdydt,findd2ydx2

Question Number 67254    Answers: 1   Comments: 10

Question Number 67246    Answers: 2   Comments: 4

Integrate: 1) ∫_3 ^( ∞) ((1/x dx)/(ln(x)(√(ln^2 x−1)))) 2) ∫_1 ^∞ ((e^x dx)/(1+e^(2x) )) 3) ∫_1 ^∞ ((2^x dx)/(x+1)) 4) ∫_2 ^∞ ((√x)/(ln(x)))dx

Integrate:1)31/xdxln(x)ln2x12)1exdx1+e2x3)12xdxx+14)2xln(x)dx

Question Number 67244    Answers: 0   Comments: 7

Which of the series converge and which diverge? Check by the limit comparison test. 1) Σ_(n=2) ^∞ ((1+n ln(n))/(n^2 +5)) 2) Σ_(n=1) ^∞ ((ln(n))/n^(3/2) ) 3) Σ_(n=3) ^∞ (1/(ln(lnn))) 4) Σ_(n=1) ^∞ (1/(n (n)^(1/n) )) ??

Whichoftheseriesconvergeandwhichdiverge?Checkbythelimitcomparisontest.1)n=21+nln(n)n2+52)n=1ln(n)n323)n=31ln(lnn)4)n=11n(n)1n??

Question Number 67236    Answers: 1   Comments: 1

let T_n =cos(narccosx) 1) calculste T_0 ,T_1 ,T_2 2)find roots of T_n 3)decompose the fraction F =(1/T_n )

letTn=cos(narccosx)1)calculsteT0,T1,T22)findrootsofTn3)decomposethefractionF=1Tn

Question Number 67235    Answers: 0   Comments: 1

find ∫_(−(π/3)) ^(π/3) x^2 {cosx−sinx}^3 dx

findπ3π3x2{cosxsinx}3dx

Question Number 67234    Answers: 2   Comments: 3

factorise p(x)=1+x+x^2 +x^3 +x^5 inside C[x] and R[x] calculate p(e^(i(π/5)) ) and p(cos((π/5)))

factorisep(x)=1+x+x2+x3+x5insideC[x]andR[x]calculatep(eiπ5)andp(cos(π5))

Question Number 67233    Answers: 0   Comments: 1

calculate ∫_0 ^1 ((xdx)/(√(1+x^4 )))

calculate01xdx1+x4

Question Number 67232    Answers: 1   Comments: 1

calculate Σ_(n=1) ^∞ ((cos(n(π/3)))/n)

calculaten=1cos(nπ3)n

Question Number 67231    Answers: 2   Comments: 0

find ∫x/x^5 −1) dx

findx/x51)dx

Question Number 67298    Answers: 0   Comments: 2

Find the third degree polynomial which vanishes when x =−1 and x = 2, which has a value 8 when x =0 and leaves a remainder ((16)/3) when divided by 3x + 2.

Findthethirddegreepolynomialwhichvanisheswhenx=1andx=2,whichhasavalue8whenx=0andleavesaremainder163whendividedby3x+2.

Question Number 67294    Answers: 0   Comments: 3

solve for x and y the simultaneous equation log_3 x = y = log(2x − 1)

solveforxandythesimultaneousequationlog3x=y=log(2x1)

Question Number 67215    Answers: 1   Comments: 1

Question Number 67208    Answers: 1   Comments: 6

Find the times in a day when the hour′s, minute′s and second′s hand of a clock occupy the same angular position. [old question reposted]

Findthetimesinadaywhenthehours,minutesandsecondshandofaclockoccupythesameangularposition.[oldquestionreposted]

Question Number 67197    Answers: 1   Comments: 0

∫_0 ^2 x^5 (1−(x/2))^4 dx

02x5(1x2)4dx

Question Number 67193    Answers: 0   Comments: 7

Question Number 67189    Answers: 1   Comments: 0

solve inside R^3 the system { ((2x+y+z =1)),((x+2y+z =2)) :} {x+y+2z =3

solveinsideR3thesystem{2x+y+z=1x+2y+z=2{x+y+2z=3

Question Number 67187    Answers: 0   Comments: 1

let f(x) =arctan(x^3 ) 1)calculate f^((n)) (x)and f^((n)) (0) 2) developp f at integr serie 3) calculate ∫_0 ^1 arctan(x^3 )dx

letf(x)=arctan(x3)1)calculatef(n)(x)andf(n)(0)2)developpfatintegrserie3)calculate01arctan(x3)dx

Question Number 67167    Answers: 4   Comments: 2

solve for real x and y:[a,b∈R] a. { ((x^3 +1=y^3 )),((x^2 +1=y^2 )) :} b. { ((x^3 +x^2 +1=y^3 )),((x^2 +x+1=y^2 )) :} c. { ((x^3 +y^2 =9xy)),((x^2 +y^3 =8xy)) :} d. { ((ax+by=2ab)),((x^2 +y^2 =4abxy)) :}

solveforrealxandy:[a,bR]a.{x3+1=y3x2+1=y2b.{x3+x2+1=y3x2+x+1=y2c.{x3+y2=9xyx2+y3=8xyd.{ax+by=2abx2+y2=4abxy

Question Number 67153    Answers: 2   Comments: 0

find ∫(v^3 −2)/(v^4 +v )dv

find(v32)/(v4+v)dv

Question Number 67148    Answers: 0   Comments: 6

explicitez la suite u_n definie par la relation; { ((u_0 =0, u_1 =1)),((u_(n+2) =u_(n+1) +u_n ∀n∈∤N)) :} u_n =???????? −calculer la lim _(n→∞) (u_(n+1) /u_n )=??? −montre que Σ_(k=0) ^n u_k =u_(n+2) −1 voila^′

explicitezlasuiteundefinieparlarelation;{u0=0,u1=1un+2=un+1+unn∈∤Nun=????????calculerlalimnun+1un=???montrequenk=0uk=un+21voila

  Pg 1381      Pg 1382      Pg 1383      Pg 1384      Pg 1385      Pg 1386      Pg 1387      Pg 1388      Pg 1389      Pg 1390   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com