Question and Answers Forum |
AllQuestion and Answers: Page 14 |
Prove that: (1/(1001)) + (1/(1002)) + ... + (1/(2000)) > (5/8) |
6(1/4)% |
Find all three-digit numbers n such that 1. n is divisible by the sum of its digits. 2. n is a perfect square. |
Find all positive integer x,y such that x^2 + y^2 + xy = 169 |
Ed:.06 a function δ(x) is a composite function which is as follow [{(f ○ g)(x)} ○ {(g ○ f)(x)}] ○ [{(f ′ ○ g ′)(x)} ○ {(g ′ ○ f ′)(x)}] where f(x) = Π_(n = 1) ^∞ ((nx^3 − nx^2 − nx −n)/(n^3 x − n^2 x − nx −x)) g(x)= f ′′(x) ∫_( ψ) ^( δ) δ(x) dx ∈ R\Q ? true or false? |
Prove:n!=1+Σ_(k=1) ^∞ (k^n /e^k )−Σ_(k=1) ^∞ ((B_k sin(πk)(n−k)!)/(πk)) |
Prove:Γ(x)=(x^x /((2π)^(x−1) ))Π_(k=1) ^∞ (k^(2(x−1)) /(Π_(i=1) ^(x−1) [k^2 −((i/2))^2 ])) |
![]() |
Evaluate ((Σ_(k=1) ^(10) (∫_0 ^k (4u+1)du))/(5^2 Σ_(n=1) ^∞ (1/2)(Σ_(n=2) ^∞ (2/(m^2 +2m)))^(n−1) ))∫_(sin^(−1) (((−(√2))/2))) ^((π/2)cos(π/2)) (((1−secθsinθ)/((tanθ+cotθ)/(ϱ^θ −ϱ^(πi) ))))dθ |
Π_(k=1) ^n cos((x/2^k ))=Pn(x) evaluate Pn(x) and P_n (x^2 +1) |
Let p be a prime number greater than 3. Prove that p^2 − 1 is always divisible by 24. |
![]() |
![]() |
![]() |
Find all pairs of positive integers x, y that satisfy the system xy + x + y=71 x^2 y + xy^2 =880 |
Prove that: δ(n) = Σ_(d/n) 𝛟(d) 𝛕((n/d)) 𝛅(n) = Σ_(d/n) d , 𝛕(n) = Σ_(d/n) l and ϕ-Eyler.f |
Find: (((1 + tan1°)(1 + tan2°)...(1 + tan44°))/((1−tan46°)(1−tan47°)...(1−tan89°))) = ? |
Prove:∀x∈R,∣cos x∣+∣cos 2x∣+…+∣cos nx∣≥((n−1)/2)(n∈Z_(>0) ) |
![]() |
![]() |
f(x) = ax^4 + bx^3 + cx^2 + dx + e f(1) = 2 f(2) = 3 f(3) = 4 f(4) = 5 f(0) = 25 Then f(5) = ? Help me, please |
Prove:∫_(0 ) ^1 ((K(x))/( (√(3−x))))dx=(1/(96π(√3)))×Γ((1/(24)))Γ((3/(24)))Γ((7/(24)))Γ(((11)/(24))) |
40 random numbers picked from 0 to 100. what is the probability that at least half of them has the range of 10. |
![]() |
![]() |
Uh guys is the speed formula (d/t) or lim_(Δt→0) ((Δd)/(Δt)) |