Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1423

Question Number 63636    Answers: 0   Comments: 0

Find all solutions of (x, y, a, b) for these equations : x + y^2 = p^a x^2 + y = p^b which x, y, a, b are integers and p prime number .

Findallsolutionsof(x,y,a,b)fortheseequations:x+y2=pax2+y=pbwhichx,y,a,bareintegersandpprimenumber.

Question Number 63618    Answers: 1   Comments: 5

Question Number 63615    Answers: 0   Comments: 5

Question Number 63643    Answers: 1   Comments: 0

P(α,β) Q(γ,δ) are two points lie on curve tan^2 (x+y)+cos^2 (x+y)+y^2 +2y=0 on XY plane.If d=PQ then cos d= ans:±2nπ,n∈N

P(α,β)Q(γ,δ)aretwopointslieoncurvetan2(x+y)+cos2(x+y)+y2+2y=0onXYplane.Ifd=PQthencosd=ans:±2nπ,nN

Question Number 63602    Answers: 2   Comments: 0

32x^3 −48x^2 −22x−3=0

32x348x222x3=0

Question Number 63597    Answers: 0   Comments: 0

Question Number 63596    Answers: 0   Comments: 1

The surnames of 40 students in a class were arranged in alphabetical order. 16 of the surnames begin with O while 9 of the surnames begin with A. 14 of the letters of the alphabet do not appear as the first letter of any surname. (i) What is the probability that the surname of a child picked at random from the class begins with either A or O (ii) If more than one surname begins with a letter besides A and O. How many surnames begins with that letter ?

Thesurnamesof40studentsinaclasswerearrangedinalphabeticalorder.16ofthesurnamesbeginwithOwhile9ofthesurnamesbeginwithA.14ofthelettersofthealphabetdonotappearasthefirstletterofanysurname.(i)WhatistheprobabilitythatthesurnameofachildpickedatrandomfromtheclassbeginswitheitherAorO(ii)IfmorethanonesurnamebeginswithaletterbesidesAandO.Howmanysurnamesbeginswiththatletter?

Question Number 63588    Answers: 1   Comments: 1

Question Number 63574    Answers: 0   Comments: 12

prove that Σ_(k = 1) ^∞ (1/(k(2k + 1))) = 2 − 2ln(2)

provethatk=11k(2k+1)=22ln(2)

Question Number 63573    Answers: 0   Comments: 0

Question Number 63570    Answers: 1   Comments: 3

Question Number 63566    Answers: 0   Comments: 2

prove that ∫sin^n (x) dx , p∈n , p≥2 =− (1/n)cos(x) sin^(n−1) (x) + (p−1)∫sin^(n−2) (x) dx

provethatsinn(x)dx,pn,p2=1ncos(x)sinn1(x)+(p1)sinn2(x)dx

Question Number 63565    Answers: 0   Comments: 0

Question Number 63564    Answers: 1   Comments: 0

Question Number 63561    Answers: 1   Comments: 0

Question Number 63560    Answers: 0   Comments: 2

developp at laurent series 1) f(z) =(1/(z−2)) 2)g(z) =(3/(z^2 −3z +2)) 3)h(z) =(1/(z^2 +4))

developpatlaurentseries1)f(z)=1z22)g(z)=3z23z+23)h(z)=1z2+4

Question Number 63552    Answers: 1   Comments: 1

Calculate ∫_0 ^(1/2) x(√(x^2 +1)) dx+∫_(1/2) ^1 x^2 (√(x^3 +1)) dx+∫_1 ^2 x^3 (√(x^4 +1)) dx+∫_2 ^3 x^4 (√(x^5 +1 ))dx+...+∫_(78) ^(79) x^(80) (√(x^(81) +1)) dx+∫_(79) ^(80) x^(81) (√(x^(82) +1)) dx usingΣ_(n=2) ^(80) ∫_(n−1) ^n x^(n+1) (√(x^(n+2) +1))dx

Calculate120xx2+1dx+112x2x3+1dx+21x3x4+1dx+32x4x5+1dx+...+7978x80x81+1dx+8079x81x82+1dxusing80n=2nn1xn+1xn+2+1dx

Question Number 63539    Answers: 1   Comments: 2

The minimum value of 2x^2 −3x+2 is ___.

Theminimumvalueof2x23x+2is___.

Question Number 63536    Answers: 0   Comments: 1

a) if y= x^m (1−x)^n , where n∈ Z^+ , the set of positive integers, show that when (dy/dx)=0, x=(m/(m+n)) b)if y = 2(x−5)(√(x+4)) ,show that (dy/dx) = ((3(x+1))/((√(x+4)) )) c) solve the equation sinx−sin5x+cos3x = 0 for 0°≤x≤180°

a)ify=xm(1x)n,wherenZ+,thesetofpositiveintegers,showthatwhendydx=0,x=mm+nb)ify=2(x5)x+4,showthatdydx=3(x+1)x+4c)solvetheequationsinxsin5x+cos3x=0for0°x180°

Question Number 63534    Answers: 1   Comments: 0

find the set of values of x for which y is real if y=(((x−2)(x−1))/(x+2)) , x≠−2, x∈R

findthesetofvaluesofxforwhichyisrealify=(x2)(x1)x+2,x2,xR

Question Number 63532    Answers: 1   Comments: 0

prove that there exist unique intergers p and s sucb that a = bp + s with −((∣b∣)/2)< s ≤((∣b∣)/2) hence find p and s given that a=49 and b=26

provethatthereexistuniqueintergerspandssucbthata=bp+swithb2<sb2hencefindpandsgiventhata=49andb=26

Question Number 63522    Answers: 0   Comments: 2

Question Number 63519    Answers: 0   Comments: 4

consider the general definite intergral I_n =∫_0 ^(π/2) sin^n xdx a) prove that for n≥2, nI_n =(n−1)I_(n−2) . b) Find the values of i)∫_0 ^(π/2) sin^5 dx ii) ∫_0 ^(π/2) sin^6 dx

considerthegeneraldefiniteintergralIn=0π2sinnxdxa)provethatforn2,nIn=(n1)In2.b)Findthevaluesofi)0π2sin5dxii)0π2sin6dx

Question Number 63517    Answers: 1   Comments: 0

Given that ∣z−6∣=2∣z+6−9i∣, a) Use algebra to show that the locus of z is a circle, stating its center and its radius. b) sketch the locus z on an argand diagram.

Giventhatz6∣=2z+69i,a)Usealgebratoshowthatthelocusofzisacircle,statingitscenteranditsradius.b)sketchthelocuszonanarganddiagram.

Question Number 63510    Answers: 0   Comments: 1

let f(x)=∫_0 ^∞ (t^(a−1) /(x+t)) dt with x>0 and 0<a<1 1)calculate f(x) 2)calculate g(x)=∫_0 ^∞ (t^(a−1) /((x+t)^2 ))dt 3)find the value of∫_0 ^∞ (t^(a−1) /((1+t)^2 ))dt

letf(x)=0ta1x+tdtwithx>0and0<a<11)calculatef(x)2)calculateg(x)=0ta1(x+t)2dt3)findthevalueof0ta1(1+t)2dt

Question Number 63509    Answers: 1   Comments: 1

calculate ∫_(−1) ^1 ((√(1+x^2 )) −(√(1−x^2 )))dx

calculate11(1+x21x2)dx

  Pg 1418      Pg 1419      Pg 1420      Pg 1421      Pg 1422      Pg 1423      Pg 1424      Pg 1425      Pg 1426      Pg 1427   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com