Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1427

Question Number 62869    Answers: 1   Comments: 0

y(dy/dx) − (y/(dy/dx)) = 2a a is a real number

ydydxydydx=2aaisarealnumber

Question Number 62856    Answers: 0   Comments: 3

let f(λ) =∫_0 ^(+∞) (x^4 /(x^6 +λ^6 )) dx with λ>0 1) calculate f(λ) 2) calculate also g(λ) =∫_0 ^∞ (x^4 /((x^6 +λ^6 )^2 ))dx 3) find the values of ∫_0 ^∞ (x^4 /(x^6 +1)) dx , ∫_0 ^∞ (x^4 /(x^6 +8))dx and ∫_0 ^∞ (x^4 /((x^6 +8)^2 ))dx.

letf(λ)=0+x4x6+λ6dxwithλ>01)calculatef(λ)2)calculatealsog(λ)=0x4(x6+λ6)2dx3)findthevaluesof0x4x6+1dx,0x4x6+8dxand0x4(x6+8)2dx.

Question Number 62855    Answers: 0   Comments: 1

find ∫ ((x^4 /(1+x^6 )))^2 dx 2) calculate ∫_0 ^1 (x^8 /((1+x^6 )^2 ))dx 3) calculate ∫_0 ^(+∞) (x^8 /((1+x^6 )^2 ))dx .

find(x41+x6)2dx2)calculate01x8(1+x6)2dx3)calculate0+x8(1+x6)2dx.

Question Number 62850    Answers: 1   Comments: 1

Question Number 62844    Answers: 1   Comments: 0

Let p(x) = ax^2 + bx + c be such that p(x) takes real values for real values of x and non−real values for non−real values of x . Prove that a = 0 and find all possible values of c.

Letp(x)=ax2+bx+cbesuchthatp(x)takesrealvaluesforrealvaluesofxandnonrealvaluesfornonrealvaluesofx.Provethata=0andfindallpossiblevaluesofc.

Question Number 62839    Answers: 1   Comments: 3

Question Number 62836    Answers: 0   Comments: 0

Question Number 62833    Answers: 0   Comments: 2

∫((cos(x))/x) dx ∫(√(sin(x) )) dx ∫(√(1−k^2 sin^2 (x))) dx k:constant

cos(x)xdxsin(x)dx1k2sin2(x)dxk:constant

Question Number 62828    Answers: 0   Comments: 1

let U_n =∫_0 ^(+∞) ((cos(ch(nx)))/((3+x^2 )^2 ))dx 1) calculate U_n interms of n 2) find lim_(n→+∞) n U_n and lim_(n→+∞) n^2 U_n 3)study the serie Σ U_n

letUn=0+cos(ch(nx))(3+x2)2dx1)calculateUnintermsofn2)findlimn+nUnandlimn+n2Un3)studytheserieΣUn

Question Number 62826    Answers: 0   Comments: 4

Question Number 62821    Answers: 2   Comments: 1

Question Number 62815    Answers: 0   Comments: 2

developp at fourier serie f(x) =cos(tx) ,2π periodic even .

developpatfourierserief(x)=cos(tx),2πperiodiceven.

Question Number 62814    Answers: 0   Comments: 10

Question Number 62813    Answers: 0   Comments: 0

find the value of ∫_0 ^∞ e^(−(t^2 +(1/t^2 ))) dt study first the convergence .

findthevalueof0e(t2+1t2)dtstudyfirsttheconvergence.

Question Number 62812    Answers: 0   Comments: 1

let U_n =∫_0 ^(+∞) ((arctan(nt))/(1+n^2 t^2 ))dt with n natural≥1 1) calculate U_n 2) calculate lim_(n→+∞) n^2 U_n 3) study the convergence of Σ U_n

letUn=0+arctan(nt)1+n2t2dtwithnnatural11)calculateUn2)calculatelimn+n2Un3)studytheconvergenceofΣUn

Question Number 62811    Answers: 0   Comments: 2

1) find ∫ ((2x^2 −1)/((x+1)(x−3)(x^2 −x+2)))dx 2)calculate ∫_5 ^(+∞) ((2x^2 −1)/((x+1)(x−3)(x^2 −x+2)))dx

1)find2x21(x+1)(x3)(x2x+2)dx2)calculate5+2x21(x+1)(x3)(x2x+2)dx

Question Number 62809    Answers: 0   Comments: 1

let f(x) = arctan(nx) with n integr natural 1) calculate f^((n)) (x) and f^((n)) (0) 2) developp f at integr serie .

letf(x)=arctan(nx)withnintegrnatural1)calculatef(n)(x)andf(n)(0)2)developpfatintegrserie.

Question Number 62808    Answers: 0   Comments: 0

f(t) =∫_0 ^(+∞) (e^(−xt) /((x+t)^2 ))dx with t≥0 1) study the set of definition for f(t) 2)study the continuity of f 3)study the derivability of f 4) developp f at integr serie

f(t)=0+ext(x+t)2dxwitht01)studythesetofdefinitionforf(t)2)studythecontinuityoff3)studythederivabilityoff4)developpfatintegrserie

Question Number 62806    Answers: 0   Comments: 1

find the value of ∫_(−∞) ^(+∞) ((x+1)/((x^4 +x^2 +1)^3 ))dx

findthevalueof+x+1(x4+x2+1)3dx

Question Number 62805    Answers: 0   Comments: 1

calculate ∫_0 ^(+∞) ((3x^2 −2)/((x^2 +1)( x^2 −2i)^2 )) dx

calculate0+3x22(x2+1)(x22i)2dx

Question Number 63060    Answers: 1   Comments: 0

Question Number 62801    Answers: 0   Comments: 0

Question Number 62800    Answers: 0   Comments: 2

Question Number 62798    Answers: 0   Comments: 0

Calculate tg(20°)+4sin(20°)+1

Calculatetg(20°)+4sin(20°)+1

Question Number 62790    Answers: 1   Comments: 1

Question Number 62782    Answers: 0   Comments: 0

  Pg 1422      Pg 1423      Pg 1424      Pg 1425      Pg 1426      Pg 1427      Pg 1428      Pg 1429      Pg 1430      Pg 1431   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com