Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1431

Question Number 61674    Answers: 1   Comments: 4

a.∫_( 0) ^( (𝛑/4)) (√(1+tgx)) dx=? b.∫_( 0) ^( 1) (√(1+lnx)) dx=?

a.π401+tgxdx=?b.101+lnxdx=?

Question Number 61654    Answers: 0   Comments: 0

∫_0 ^∞ e^(−e^x ) ln(x) dx = 0.27634

0eexln(x)dx=0.27634

Question Number 61646    Answers: 0   Comments: 0

let f(x) =e^(−ax) arctan(3x) with a>0 1) calculate f^((n)) (x) and f^((n)) (0) 2) developp f (x) at integr serie . 3) calculate ∫_0 ^∞ f(x)dx .

letf(x)=eaxarctan(3x)witha>01)calculatef(n)(x)andf(n)(0)2)developpf(x)atintegrserie.3)calculate0f(x)dx.

Question Number 61645    Answers: 0   Comments: 1

calculate ∫∫_D ∫(√(x^2 +y^2 +z^2 ))dxdydz with D ={(x,y,z) / 0≤x≤1 ,1≤y≤2 , 2≤z≤3 }

calculateDx2+y2+z2dxdydzwithD={(x,y,z)/0x1,1y2,2z3}

Question Number 61652    Answers: 1   Comments: 1

solve inside C z^4 =((1−i)/(1+i(√3)))

solveinsideCz4=1i1+i3

Question Number 61651    Answers: 0   Comments: 4

let p(x) =(x+i(√3))^n +(x−i(√3))^n with x real 1) simlify p(x) 2) find the roots of P(x) 3)decompose inside C[x] p(x) 4) calculate ∫_0 ^1 p(x)dx

letp(x)=(x+i3)n+(xi3)nwithxreal1)simlifyp(x)2)findtherootsofP(x)3)decomposeinsideC[x]p(x)4)calculate01p(x)dx

Question Number 61650    Answers: 0   Comments: 4

solve inside N^2 (x+1)(y+2) =2xy

solveinsideN2(x+1)(y+2)=2xy

Question Number 61648    Answers: 0   Comments: 1

calculate ∫∫_W (x^2 −2y^2 )(√(x^2 +y^2 +3))dxdy with W ={ (x,y) ∈ R^2 / 1≤x ≤(√3) and x^2 +y^2 −2y ≤ 2 }

calculateW(x22y2)x2+y2+3dxdywithW={(x,y)R2/1x3andx2+y22y2}

Question Number 61635    Answers: 1   Comments: 0

2(∫_0 ^( x) y^3 cos xdx)[((yd^2 y)/dx^2 )−((dy/dx))^2 ] = ky^5 sin x ; y(0)=a, y′(0)=0 . solve the differential equation. (Laplace tranforms might be helpful, i think).

2(0xy3cosxdx)[yd2ydx2(dydx)2]=ky5sinx;y(0)=a,y(0)=0.solvethedifferentialequation.(Laplacetranformsmightbehelpful,ithink).

Question Number 61622    Answers: 0   Comments: 0

If (√(x (√((x+1) (√((x+2) (√((x+3) (√(...)))))))))) = 2019 so (√(x + (√((x+1) + (√((x+2) + (√((x+3) + (√(...)))))))))) = ?

Ifx(x+1)(x+2)(x+3)...=2019sox+(x+1)+(x+2)+(x+3)+...=?

Question Number 61667    Answers: 1   Comments: 0

∫(√(tan(x))) dx

tan(x)dx

Question Number 61625    Answers: 1   Comments: 0

1+(1/(1+(1/(1+(1/(1+(1/(1+(1/(1+...))))))))))=

1+11+11+11+11+11+...=

Question Number 61614    Answers: 0   Comments: 1

∫_(−1) ^1 (d/dx) (tan^(−1) (1/x))dx =

11ddx(tan11x)dx=

Question Number 61613    Answers: 1   Comments: 1

S = 1 + (3/(2018)) + (5/(2018^2 )) + (7/(2018^3 )) + ... 4S − S^2 = ?

S=1+32018+520182+720183+...4SS2=?

Question Number 61605    Answers: 0   Comments: 7

solve at Z^2 2x +5y =4

solveatZ22x+5y=4

Question Number 61601    Answers: 1   Comments: 1

calvulate ∫∫_w (x^2 −y^2 )e^(−x−y) dxdy with W={(x,y)∈R^2 /0≤x≤1 and 1≤y≤3}

calvulatew(x2y2)exydxdywithW={(x,y)R2/0x1and1y3}

Question Number 61591    Answers: 1   Comments: 8

solve for z∈C (z)^(1/2) =−1 (z)^(1/3) =−1 (z)^(1/4) =−1

solveforzCz2=1z3=1z4=1

Question Number 61569    Answers: 1   Comments: 3

Question Number 61566    Answers: 1   Comments: 0

∫_2 ^4 ((√(ln(9−(6−x)))/((√(ln(9−x))) + (√(ln(3−x))))) dx

24ln(9(6x)ln(9x)+ln(3x)dx

Question Number 61559    Answers: 2   Comments: 1

Question Number 61554    Answers: 1   Comments: 1

Question Number 61545    Answers: 0   Comments: 0

Question Number 61537    Answers: 2   Comments: 2

Question Number 61536    Answers: 0   Comments: 1

1)let U_n =Σ_(k=0) ^n (−1)^k =1−1+1−1+...(n+1 terms) is lim_(n→+∞) U_n exist ? find U_n by using integr part[..] 2) let V_n = Σ_(k=1) ^n k(−1)^k = −1+2 −3+4+.....(nterms) is lim_(n→+∞) V_n exist find V_n by using integr part[..]

1)letUn=k=0n(1)k=11+11+...(n+1terms)islimn+Unexist?findUnbyusingintegrpart[..]2)letVn=k=1nk(1)k=1+23+4+.....(nterms)islimn+VnexistfindVnbyusingintegrpart[..]

Question Number 61535    Answers: 0   Comments: 0

calculate ∫_0 ^(π/2) ((ln(1+cosx))/(cosx)) dx

calculate0π2ln(1+cosx)cosxdx

Question Number 61534    Answers: 0   Comments: 0

calculate f(a) =∫∫_W (x+ay)e^(−x) e^(−ay) dxdy with W_a ={(x,y)∈R^2 /x≥0 ,y≥0 , x+ay ≤1 } a>0

calculatef(a)=W(x+ay)exeaydxdywithWa={(x,y)R2/x0,y0,x+ay1}a>0

  Pg 1426      Pg 1427      Pg 1428      Pg 1429      Pg 1430      Pg 1431      Pg 1432      Pg 1433      Pg 1434      Pg 1435   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com