Question and Answers Forum |
AllQuestion and Answers: Page 1431 |
a.∫_( 0) ^( (𝛑/4)) (√(1+tgx)) dx=? b.∫_( 0) ^( 1) (√(1+lnx)) dx=? |
∫_0 ^∞ e^(−e^x ) ln(x) dx = 0.27634 |
let f(x) =e^(−ax) arctan(3x) with a>0 1) calculate f^((n)) (x) and f^((n)) (0) 2) developp f (x) at integr serie . 3) calculate ∫_0 ^∞ f(x)dx . |
calculate ∫∫_D ∫(√(x^2 +y^2 +z^2 ))dxdydz with D ={(x,y,z) / 0≤x≤1 ,1≤y≤2 , 2≤z≤3 } |
solve inside C z^4 =((1−i)/(1+i(√3))) |
let p(x) =(x+i(√3))^n +(x−i(√3))^n with x real 1) simlify p(x) 2) find the roots of P(x) 3)decompose inside C[x] p(x) 4) calculate ∫_0 ^1 p(x)dx |
solve inside N^2 (x+1)(y+2) =2xy |
calculate ∫∫_W (x^2 −2y^2 )(√(x^2 +y^2 +3))dxdy with W ={ (x,y) ∈ R^2 / 1≤x ≤(√3) and x^2 +y^2 −2y ≤ 2 } |
2(∫_0 ^( x) y^3 cos xdx)[((yd^2 y)/dx^2 )−((dy/dx))^2 ] = ky^5 sin x ; y(0)=a, y′(0)=0 . solve the differential equation. (Laplace tranforms might be helpful, i think). |
If (√(x (√((x+1) (√((x+2) (√((x+3) (√(...)))))))))) = 2019 so (√(x + (√((x+1) + (√((x+2) + (√((x+3) + (√(...)))))))))) = ? |
∫(√(tan(x))) dx |
1+(1/(1+(1/(1+(1/(1+(1/(1+(1/(1+...))))))))))= |
∫_(−1) ^1 (d/dx) (tan^(−1) (1/x))dx = |
S = 1 + (3/(2018)) + (5/(2018^2 )) + (7/(2018^3 )) + ... 4S − S^2 = ? |
solve at Z^2 2x +5y =4 |
calvulate ∫∫_w (x^2 −y^2 )e^(−x−y) dxdy with W={(x,y)∈R^2 /0≤x≤1 and 1≤y≤3} |
solve for z∈C (z)^(1/2) =−1 (z)^(1/3) =−1 (z)^(1/4) =−1 |
![]() |
∫_2 ^4 ((√(ln(9−(6−x)))/((√(ln(9−x))) + (√(ln(3−x))))) dx |
![]() |
![]() |
![]() |
![]() |
1)let U_n =Σ_(k=0) ^n (−1)^k =1−1+1−1+...(n+1 terms) is lim_(n→+∞) U_n exist ? find U_n by using integr part[..] 2) let V_n = Σ_(k=1) ^n k(−1)^k = −1+2 −3+4+.....(nterms) is lim_(n→+∞) V_n exist find V_n by using integr part[..] |
calculate ∫_0 ^(π/2) ((ln(1+cosx))/(cosx)) dx |
calculate f(a) =∫∫_W (x+ay)e^(−x) e^(−ay) dxdy with W_a ={(x,y)∈R^2 /x≥0 ,y≥0 , x+ay ≤1 } a>0 |
Pg 1426 Pg 1427 Pg 1428 Pg 1429 Pg 1430 Pg 1431 Pg 1432 Pg 1433 Pg 1434 Pg 1435 |