Question and Answers Forum |
AllQuestion and Answers: Page 1443 |
calculate ∫_0 ^(π/2) ((ln(1+cosx))/(cosx)) dx |
calculate f(a) =∫∫_W (x+ay)e^(−x) e^(−ay) dxdy with W_a ={(x,y)∈R^2 /x≥0 ,y≥0 , x+ay ≤1 } a>0 |
∫∫_([0,1]^2 ) ((x−y)/((x^2 +3y^(2 ) +1)^2 )) dxdy |
prove that (((a+b)^n )/(a^n +b^n )) <2^(n−1) ∀ n>1 (n natural) |
let U_n =∫_0 ^∞ (x^(−2n) /(1+x^4 )) dx with n integr natural and n≥1 1) calculate U_n interms of n 2) find lim_(n→+∞) n^2 U_n 3) study the serie Σ U_n |
find ∫_0 ^∞ x^2 e^(−zx^2 ) dx with z from C |
find ∫_0 ^∞ cos(zx^2 )dx with z ∈ C . |
Solve for n: D/A×{1−((P×((((1+i)^n ×i)/((1+i)^n −1))))/((P×((((1+i)^r ×i)/((1+i)^r −1))))−(R/i)×[((1/n)+i)×((((1+i)^r ×i)/((1+i)^r −1)))−((1/n)+i)×((((1+i)^n ×i)/((1+i)^n −1)))]))}−1=0 |
I=∫((sin x.e^(cos x) −(sin x+cos x)e^((sin x+cos x)) )/(e^(2sin x) −2e^(sin x) +1))dx |
![]() |
![]() |
![]() |
cos^(−1) ((2x^2 −1)/(2x^2 )) + cos^(−1) ((x^2 −2)/x^2 )=120°=((2π)/3) Find x |
S_1 =Σ_(k=1) ^n (√((16n−16k)(16n+16k))) S_2 =Σ_(k=1) ^n (√((16k−16)(16k+16))) lim_(n→∞) ((S_1 +S_2 )/n^2 )=? |
(√(a−(√(a+x))))+(√(a+(√(a−x))))=2x this is the solution Sir Aifour and me found trivial solution a=x=0 a, x ∈R x=((√2)/8)(r+(√(r^2 +4)))(√(2(4a−1)−r^2 −r(√(r^2 +4)))) with r=−2(√((4a−3)/3))sin ((1/3)arcsin ((3(√3))/((4a−3)^(3/2) ))) no solution for a<a_0 with a_0 ≈1.509830340886 |
x(y+1) + y(x−1) = 12 x(√y) + y(√x) = 21 x, y ∈ R x + y = ? |
Solve for x: ((6(√(2x)))/(x − 1)) + ((5(√(x − 1)))/(2x)) = 13 |
Is there any other solution besides {x=a,y=b} or {x=b,y=a} of the following system of equations x+y=a+b ∧ x^7 +y^7 =a^7 +b^7 ? |
∫_0 ^(2π) (1/(a^2 cos^2 (t)+b^2 sin^2 (t)))dt=((2π)/(ab))? |
![]() |
find ∫_0 ^1 ((ln(x)ln(1+x))/x)dx |
![]() |
![]() |
![]() |
![]() |
Find the multinomial coefficient: ((( 9)),((3, 5, 1, 0)) ) |
Pg 1438 Pg 1439 Pg 1440 Pg 1441 Pg 1442 Pg 1443 Pg 1444 Pg 1445 Pg 1446 Pg 1447 |