Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1443

Question Number 61535    Answers: 0   Comments: 0

calculate ∫_0 ^(π/2) ((ln(1+cosx))/(cosx)) dx

calculate0π2ln(1+cosx)cosxdx

Question Number 61534    Answers: 0   Comments: 0

calculate f(a) =∫∫_W (x+ay)e^(−x) e^(−ay) dxdy with W_a ={(x,y)∈R^2 /x≥0 ,y≥0 , x+ay ≤1 } a>0

calculatef(a)=W(x+ay)exeaydxdywithWa={(x,y)R2/x0,y0,x+ay1}a>0

Question Number 61533    Answers: 0   Comments: 2

∫∫_([0,1]^2 ) ((x−y)/((x^2 +3y^(2 ) +1)^2 )) dxdy

[0,1]2xy(x2+3y2+1)2dxdy

Question Number 61532    Answers: 0   Comments: 0

prove that (((a+b)^n )/(a^n +b^n )) <2^(n−1) ∀ n>1 (n natural)

provethat(a+b)nan+bn<2n1n>1(nnatural)

Question Number 61530    Answers: 0   Comments: 5

let U_n =∫_0 ^∞ (x^(−2n) /(1+x^4 )) dx with n integr natural and n≥1 1) calculate U_n interms of n 2) find lim_(n→+∞) n^2 U_n 3) study the serie Σ U_n

letUn=0x2n1+x4dxwithnintegrnaturalandn11)calculateUnintermsofn2)findlimn+n2Un3)studytheserieΣUn

Question Number 61529    Answers: 0   Comments: 0

find ∫_0 ^∞ x^2 e^(−zx^2 ) dx with z from C

find0x2ezx2dxwithzfromC

Question Number 61528    Answers: 0   Comments: 4

find ∫_0 ^∞ cos(zx^2 )dx with z ∈ C .

find0cos(zx2)dxwithzC.

Question Number 61526    Answers: 0   Comments: 0

Solve for n: D/A×{1−((P×((((1+i)^n ×i)/((1+i)^n −1))))/((P×((((1+i)^r ×i)/((1+i)^r −1))))−(R/i)×[((1/n)+i)×((((1+i)^r ×i)/((1+i)^r −1)))−((1/n)+i)×((((1+i)^n ×i)/((1+i)^n −1)))]))}−1=0

Solveforn:D/A×{1P×((1+i)n×i(1+i)n1)(P×((1+i)r×i(1+i)r1))Ri×[(1n+i)×((1+i)r×i(1+i)r1)(1n+i)×((1+i)n×i(1+i)n1)]}1=0

Question Number 61522    Answers: 1   Comments: 0

I=∫((sin x.e^(cos x) −(sin x+cos x)e^((sin x+cos x)) )/(e^(2sin x) −2e^(sin x) +1))dx

I=sinx.ecosx(sinx+cosx)e(sinx+cosx)e2sinx2esinx+1dx

Question Number 61521    Answers: 1   Comments: 0

Question Number 61520    Answers: 0   Comments: 0

Question Number 61495    Answers: 1   Comments: 7

Question Number 61511    Answers: 1   Comments: 0

cos^(−1) ((2x^2 −1)/(2x^2 )) + cos^(−1) ((x^2 −2)/x^2 )=120°=((2π)/3) Find x

cos12x212x2+cos1x22x2=120°=2π3Findx

Question Number 61510    Answers: 0   Comments: 0

S_1 =Σ_(k=1) ^n (√((16n−16k)(16n+16k))) S_2 =Σ_(k=1) ^n (√((16k−16)(16k+16))) lim_(n→∞) ((S_1 +S_2 )/n^2 )=?

S1=nk=1(16n16k)(16n+16k)S2=nk=1(16k16)(16k+16)limnS1+S2n2=?

Question Number 61490    Answers: 0   Comments: 10

(√(a−(√(a+x))))+(√(a+(√(a−x))))=2x this is the solution Sir Aifour and me found trivial solution a=x=0 a, x ∈R x=((√2)/8)(r+(√(r^2 +4)))(√(2(4a−1)−r^2 −r(√(r^2 +4)))) with r=−2(√((4a−3)/3))sin ((1/3)arcsin ((3(√3))/((4a−3)^(3/2) ))) no solution for a<a_0 with a_0 ≈1.509830340886

aa+x+a+ax=2xthisisthesolutionSirAifourandmefoundtrivialsolutiona=x=0a,xRx=28(r+r2+4)2(4a1)r2rr2+4withr=24a33sin(13arcsin33(4a3)32)nosolutionfora<a0witha01.509830340886

Question Number 61565    Answers: 2   Comments: 3

x(y+1) + y(x−1) = 12 x(√y) + y(√x) = 21 x, y ∈ R x + y = ?

x(y+1)+y(x1)=12xy+yx=21x,yRx+y=?

Question Number 61479    Answers: 3   Comments: 1

Solve for x: ((6(√(2x)))/(x − 1)) + ((5(√(x − 1)))/(2x)) = 13

Solveforx:62xx1+5x12x=13

Question Number 61470    Answers: 1   Comments: 0

Is there any other solution besides {x=a,y=b} or {x=b,y=a} of the following system of equations x+y=a+b ∧ x^7 +y^7 =a^7 +b^7 ?

Isthereanyothersolutionbesides{x=a,y=b}or{x=b,y=a}ofthefollowingsystemofequationsx+y=a+bx7+y7=a7+b7?

Question Number 61465    Answers: 1   Comments: 1

∫_0 ^(2π) (1/(a^2 cos^2 (t)+b^2 sin^2 (t)))dt=((2π)/(ab))?

02π1a2cos2(t)+b2sin2(t)dt=2πab?

Question Number 61461    Answers: 1   Comments: 0

Question Number 61453    Answers: 1   Comments: 0

find ∫_0 ^1 ((ln(x)ln(1+x))/x)dx

find01ln(x)ln(1+x)xdx

Question Number 61451    Answers: 0   Comments: 0

Question Number 61449    Answers: 1   Comments: 1

Question Number 61425    Answers: 0   Comments: 1

Question Number 61424    Answers: 1   Comments: 0

Question Number 61412    Answers: 0   Comments: 2

Find the multinomial coefficient: ((( 9)),((3, 5, 1, 0)) )

Findthemultinomialcoefficient:(93,5,1,0)

  Pg 1438      Pg 1439      Pg 1440      Pg 1441      Pg 1442      Pg 1443      Pg 1444      Pg 1445      Pg 1446      Pg 1447   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com