Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1490

Question Number 55273    Answers: 0   Comments: 1

let f(x) =∫_x^2 ^(1+x) (dt/(1+t+t^2 )) 1) calculate f(x) interms of x 2) calculate lim_(x→0) f(x) and lim_(x→+∞) f(x)

letf(x)=x21+xdt1+t+t21)calculatef(x)intermsofx2)calculatelimx0f(x)andlimx+f(x)

Question Number 55271    Answers: 0   Comments: 0

1) let f(x) =∫_0 ^(2π) ((cost)/(3 +sin(xt)))dt find a explicit form of f(x) 2) calculate g(x) =∫_0 ^(2π) ((tcos(xt)cost)/((3 +sin(xt))^2 ))dt 3) calculate ∫_0 ^(2π) ((cost)/(3+sint)) and ∫_0 ^(2π) ((t cos^2 t)/((3+sint)^2 ))dt

1)letf(x)=02πcost3+sin(xt)dtfindaexplicitformoff(x)2)calculateg(x)=02πtcos(xt)cost(3+sin(xt))2dt3)calculate02πcost3+sintand02πtcos2t(3+sint)2dt

Question Number 55270    Answers: 0   Comments: 1

let f(x)=x^n arctan(x^2 ) with n integr natural 1) calculate f^((n)) (x) and f^((n)) (0) 2)developp f at integr serie .

letf(x)=xnarctan(x2)withnintegrnatural1)calculatef(n)(x)andf(n)(0)2)developpfatintegrserie.

Question Number 55269    Answers: 0   Comments: 4

let f(x) =(2x+1)ln(1−x^2 ) 1) calculate f^((n)) (x) and f^((n)) (0) 2)developp f at integr serie. 3) calculate ∫_0 ^1 f(x)dx .

letf(x)=(2x+1)ln(1x2)1)calculatef(n)(x)andf(n)(0)2)developpfatintegrserie.3)calculate01f(x)dx.

Question Number 55268    Answers: 0   Comments: 1

calculate Σ_(n=0) ^∞ (((−1)^n )/(4n+3))

calculaten=0(1)n4n+3

Question Number 55308    Answers: 1   Comments: 0

Question Number 55288    Answers: 2   Comments: 0

Question Number 55258    Answers: 0   Comments: 0

3x+5y=?_

3x+5y=?

Question Number 55267    Answers: 0   Comments: 0

1) calculate f(x)=∫_0 ^(π/4) ln(1+xtanθ)dθ 2) find the values of integrals ∫_0 ^(π/4) ln(1+tanθ) and ∫_0 ^(π/4) ln(1+2tanθ)dθ . 1) we have f^′ (x)=∫_0 ^(π/4) ((tanθ)/(1+xtanθ)) dθ =∫_0 ^(π/4) (((sinθ)/(cosθ))/(1+x((sinθ)/(cosθ))))dθ =∫_0 ^(π/4) ((sinθ)/(cosθ +xsinθ)) dθ =_(tan((θ/2))=t) ∫_0 ^((√2)−1) (((2t)/(1+t^2 ))/(((1−t^2 )/(1+t^2 )) +((2xt)/(1+t^2 )))) ((2dt)/(1+t^2 )) =∫_0 ^((√2)−1) ((4t)/((1+t^2 )(1−t^2 +2xt)))dt =−∫_0 ^((√2)−1) ((4t)/((t^2 +1)(t^2 −2xt −1)))dt let decompose F(t) = ((4t)/((t^2 +1)(t^2 −2xt −1))) roots of t^2 −2xt −1 Δ^′ =x^2 +1 ⇒t_1 =x+(√(x^2 +1)) and t_2 =x−(√(x^2 +1)) F(t)=(a/(t−t_1 )) +(b/(t−t_2 )) +((ct +d)/(t^2 +1)) a =lim_(t→t_1 ) (t−t_1 )F(t)=((4t_1 )/((t_1 ^2 +1)(t_1 −t_2 ))) =α b =lim_(t→t_2 ) (t−t_2 )F(t) =((4t_2 )/((t_2 ^2 +1)(t_2 −t_1 ))) =β ⇒F(t)=(α/(t−t_1 )) +(β/(t−t_2 )) +((ct +d)/(t^2 +1)) F(0) =0=−(α/t_1 ) −(β/t_2 ) +d ⇒d =(α/t_1 ) +(β/t_2 ) F(1)=(2/(−2x)) =−(1/x)=(α/(1−t_1 )) +(β/(1−t_2 )) +((c+d)/2) ⇒(1/x) =(α/(t_1 −1)) +(β/(t_2 −1)) −(c/2) −(d/2) ⇒(c/2) =(α/(t_1 −1)) +(β/(t_2 −1)) −(d/2) −(1/x) ⇒c =((2α)/(t_1 −1)) +((2β)/(t_2 −1)) −d−(2/x) ∫ F(t)dt =αln∣t−t_1 ∣ +βln∣t−t_2 ∣ +(c/2)ln(t^2 +1) +d arctan(t) ⇒ ∫_0 ^((√2)−1) F(t)dt =[αln∣t−t_1 ∣+βln∣t−t_2 ∣ +(c/2)ln(t^2 +1)]_0 ^((√2)−1) =αln∣(√2)−1−t_1 ∣ +βln∣(√2)−1−t_2 ∣ +(c/2)ln(4−2(√2)) =αln∣(√2)−1−x−(√(1+x^2 )))+βln∣(√2)−1−x+(√(1+x^2 ))) +((ln(4−2(√2)))/2)c =f^′ (x) ⇒ f(x)=∫ αln∣(√2)−1−x−(√(1+x^2 ))∣)dx+β∫ ln∣(√2)−1+(√(1+x^2 ))∣dx +((cx)/2)ln(4−2(√2)) +C ....be continued...

1)calculatef(x)=0π4ln(1+xtanθ)dθ2)findthevaluesofintegrals0π4ln(1+tanθ)and0π4ln(1+2tanθ)dθ.1)wehavef(x)=0π4tanθ1+xtanθdθ=0π4sinθcosθ1+xsinθcosθdθ=0π4sinθcosθ+xsinθdθ=tan(θ2)=t0212t1+t21t21+t2+2xt1+t22dt1+t2=0214t(1+t2)(1t2+2xt)dt=0214t(t2+1)(t22xt1)dtletdecomposeF(t)=4t(t2+1)(t22xt1)rootsoft22xt1Δ=x2+1t1=x+x2+1andt2=xx2+1F(t)=att1+btt2+ct+dt2+1a=limtt1(tt1)F(t)=4t1(t12+1)(t1t2)=αb=limtt2(tt2)F(t)=4t2(t22+1)(t2t1)=βF(t)=αtt1+βtt2+ct+dt2+1F(0)=0=αt1βt2+dd=αt1+βt2F(1)=22x=1x=α1t1+β1t2+c+d21x=αt11+βt21c2d2c2=αt11+βt21d21xc=2αt11+2βt21d2xF(t)dt=αlntt1+βlntt2+c2ln(t2+1)+darctan(t)021F(t)dt=[αlntt1+βlntt2+c2ln(t2+1)]021=αln21t1+βln21t2+c2ln(422)=αln21x1+x2)+βln21x+1+x2)+ln(422)2c=f(x)f(x)=αln21x1+x2)dx+βln21+1+x2dx+cx2ln(422)+C....becontinued...

Question Number 55296    Answers: 1   Comments: 0

simplify the following expression if x<0 ∣4x−(√((3x−1)^2 ))∣

simplifythefollowingexpressionifx<04x(3x1)2

Question Number 55295    Answers: 0   Comments: 0

Question Number 55245    Answers: 1   Comments: 0

Question Number 55240    Answers: 1   Comments: 0

make r the subject of the relation m=((4(√(u+r)))/(v−r))

makerthesubjectoftherelationm=4u+rvr

Question Number 55237    Answers: 1   Comments: 1

∫_0 ^3 ∫_1 ^2 (x^3 +y^2 )dxdy

0312(x3+y2)dxdy

Question Number 55230    Answers: 0   Comments: 1

calculate lim_(ξ→0) ∫_1 ^(1+ξ) ((arctan(ξt))/t) dt .

calculatelimξ011+ξarctan(ξt)tdt.

Question Number 55229    Answers: 0   Comments: 1

calculate lim_(n→+∞) ∫_0 ^n (e^(nx) /(1+nx^2 )) dx .

calculatelimn+0nenx1+nx2dx.

Question Number 55224    Answers: 3   Comments: 0

log_2 (x^2 +7x−2)=log_2 (x^2 +3x−6)+log_4 8 find x

log2(x2+7x2)=log2(x2+3x6)+log48findx

Question Number 55223    Answers: 0   Comments: 5

Question Number 55217    Answers: 1   Comments: 0

Question Number 55214    Answers: 1   Comments: 1

let U_n =∫_(1/n) ^1 (√(x^2 +(3/n)))dx .calculate lim_(n→+∞) U_n

letUn=1n1x2+3ndx.calculatelimn+Un

Question Number 55211    Answers: 1   Comments: 0

Question Number 55205    Answers: 0   Comments: 0

Please, can you help me with the following? A boat B is found at 40km at at the east of a boat A. A is moving at 30° east at 20km/h, B is moving qt 10km/h at 30°west. After how many hours will the two boats be the closest to each other? What will therefore be the position of the boat B and the boat A? Thank you

Please,canyouhelpmewiththefollowing?AboatBisfoundat40kmatattheeastofaboatA.Aismovingat30°eastat20km/h,Bismovingqt10km/hat30°west.Afterhowmanyhourswillthetwoboatsbetheclosesttoeachother?WhatwillthereforebethepositionoftheboatBandtheboatA?Thankyou

Question Number 55198    Answers: 2   Comments: 1

x^5 −4x^4 +6x^3 +8x−32=0 Find at least one root.

x54x4+6x3+8x32=0Findatleastoneroot.

Question Number 55197    Answers: 0   Comments: 4

∫(dα/(1−sin^3 α))=? ∫(dβ/(1−cos^3 β))=? ∫(dγ/(1−tan^3 γ))=?

dα1sin3α=?dβ1cos3β=?dγ1tan3γ=?

Question Number 55195    Answers: 1   Comments: 0

x^2 +ax+(√2)b=0,has 2 roots:c and d,also x^2 +cx+(√2)d=0,has 2 roots:a and b.such that:a, b, c, d,are defferent non zero numbers. find possible value(s) for:a^2 +b^2 +c^2 +d^2 .

x2+ax+2b=0,has2roots:candd,alsox2+cx+2d=0,has2roots:aandb.suchthat:a,b,c,d,aredefferentnonzeronumbers.findpossiblevalue(s)for:a2+b2+c2+d2.

Question Number 55193    Answers: 1   Comments: 0

  Pg 1485      Pg 1486      Pg 1487      Pg 1488      Pg 1489      Pg 1490      Pg 1491      Pg 1492      Pg 1493      Pg 1494   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com