Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 15

Question Number 216445    Answers: 2   Comments: 2

Prove that Γ((1/2)) = (√π)

ProvethatΓ(12)=π

Question Number 216437    Answers: 3   Comments: 0

Question Number 216454    Answers: 0   Comments: 7

Reponse a l exercice N8: Reponses par ordre:(1,2,3,4,5,6) imsge 1 imsge 2 image 3 imsge 5 imsge 4 imsge 6

ReponsealexerciceN8:Reponsesparordre:(1,2,3,4,5,6)imsge1imsge2image3imsge5imsge4imsge6

Question Number 216425    Answers: 2   Comments: 1

Question Number 216421    Answers: 1   Comments: 0

If asinθ + bcosθ = acosecθ + bsecθ then prove that each term is equal to (a^(2/3) − b^(2/3) )(√(a^(2/3) + b^(2/3) )).

Ifasinθ+bcosθ=acosecθ+bsecθthenprovethateachtermisequalto(a23b23)a23+b23.

Question Number 216416    Answers: 1   Comments: 4

Question Number 216411    Answers: 1   Comments: 0

(dx/dx)

dxdx

Question Number 216408    Answers: 0   Comments: 1

∫_(−1) ^1 (1/x)(√((1+x)/(1−x)))ln(((2x^2 +2x+1)/(2x^2 −2x+1)))dx

111x1+x1xln(2x2+2x+12x22x+1)dx

Question Number 216390    Answers: 0   Comments: 3

f(x)=ax

f(x)=ax

Question Number 216381    Answers: 1   Comments: 0

∫(lnx)^2 dx

(lnx)2dx

Question Number 216388    Answers: 1   Comments: 1

Question Number 216387    Answers: 1   Comments: 0

Question Number 216372    Answers: 2   Comments: 0

∫((xe^x )/((x+1)^2 ))dx

xex(x+1)2dx

Question Number 216369    Answers: 2   Comments: 0

Question Number 216355    Answers: 1   Comments: 1

given that ϕ,β are the roots of the equation 3x2−x−5=0 from the equation whose roots are 2ϕ−1/β,2β−1/ϕ

giventhatφ,βaretherootsoftheequation3x2x5=0fromtheequationwhoserootsare2φ1/β,2β1/φ

Question Number 216352    Answers: 1   Comments: 1

Question Number 216351    Answers: 1   Comments: 0

Vector field F^→ ;R^3 →R^3 F^→ (x,y,z)=xye_1 ^→ −5ye_2 ^→ −3yze_3 ^→ ∫∫_(S;x^2 +y^2 +z^2 =r^2 ) F^→ ∙dS^→ = ?

VectorfieldF;R3R3F(x,y,z)=xye15ye23yze3S;x2+y2+z2=r2FdS=?

Question Number 216350    Answers: 1   Comments: 0

S is the boundary surface of the surrounded by the cylinder x^2 +y^2 =9 and plane z=0 , z=2 and and vector Field F^→ ;R^3 →R^3 F^→ (x,y,z)=3ye_1 ^→ +yze_2 ^→ −xyz^5 e_3 ^→ ∫∫_(S) F^→ ∙dS^→ =?

Sistheboundarysurfaceofthesurroundedbythecylinderx2+y2=9andplanez=0,z=2andandvectorFieldF;R3R3F(x,y,z)=3ye1+yze2xyz5e3SFdS=?

Question Number 216332    Answers: 4   Comments: 0

Question Number 216324    Answers: 1   Comments: 1

Question Number 216323    Answers: 1   Comments: 2

Let 10≥x,y≥0 and x,y∈R Find a)P(x−2>y) b)P(x+2<y)

Let10x,y0andx,yRFinda)P(x2>y)b)P(x+2<y)

Question Number 216316    Answers: 2   Comments: 0

Calculer lim_(x→−2) ((x^2 +x−2)/( (√(6+x)) −2))

Calculerlimx2x2+x26+x2

Question Number 216312    Answers: 2   Comments: 0

If ab^2 + bc^2 + ca^2 = 0 then find ((a/b) + (b/c)) + ((b/c) + (c/a)) + ((c/a) + (a/b)) + 2.

Ifab2+bc2+ca2=0thenfind(ab+bc)+(bc+ca)+(ca+ab)+2.

Question Number 216296    Answers: 0   Comments: 0

Question Number 216284    Answers: 1   Comments: 1

if i have 7200 coin and Each A,B,C are 500 coin at this time how many Should i buy each so that i can buy as many possible???

ifihave7200coinandEachA,B,Care500coinatthistimehowmanyShouldibuyeachsothaticanbuyasmanypossible???

Question Number 216281    Answers: 0   Comments: 4

Prove:∫_0 ^(π/2) dφ∫_0 ^(π/2) f(sinθ cos θ)sinθ dθ=(π/2)∫_0 ^1 f(x)dx

Prove:0π2dϕ0π2f(sinθcosθ)sinθdθ=π201f(x)dx

  Pg 10      Pg 11      Pg 12      Pg 13      Pg 14      Pg 15      Pg 16      Pg 17      Pg 18      Pg 19   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com