Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1504

Question Number 54699    Answers: 2   Comments: 3

∫ e^(2x) ((1/x) −(1/(2x^2 )))dx ∫e^(2x) (((1+sin 2x)/(1+cos 2x)))dx. Solve above Questions by using the formulae : ∫e^(kx) {f(kx)+f ′(kx)}dx= e^(kx) f(kx)+c.

e2x(1x12x2)dxe2x(1+sin2x1+cos2x)dx.SolveaboveQuestionsbyusingtheformulae:ekx{f(kx)+f(kx)}dx=ekxf(kx)+c.

Question Number 54698    Answers: 2   Comments: 0

How many words with at least 2 letters can be formed using the letters from TINKUTARA?

Howmanywordswithatleast2letterscanbeformedusingthelettersfromTINKUTARA?

Question Number 54679    Answers: 2   Comments: 1

Question Number 54675    Answers: 1   Comments: 1

simplify A_n =Σ_(k=0) ^n k^2 C_n ^k cos(kθ) and B_n =Σ_(k=0) ^n k^2 C_n ^k sin(kθ) .

simplifyAn=k=0nk2Cnkcos(kθ)andBn=k=0nk2Cnksin(kθ).

Question Number 54688    Answers: 1   Comments: 1

f(x)=((2[x])/(3x−[x])) examine its continuity at x=((−1)/2) where [x] is greatest integer function

f(x)=2[x]3x[x]examineitscontinuityatx=12where[x]isgreatestintegerfunction

Question Number 54663    Answers: 1   Comments: 1

y = cos2t×sen2t y′ = ?

y=cos2t×sen2ty=?

Question Number 54661    Answers: 1   Comments: 3

Question Number 54659    Answers: 1   Comments: 2

Question Number 54658    Answers: 0   Comments: 0

Question Number 54647    Answers: 0   Comments: 3

show that a. Σ_(r=1) ^(n) r^3 ._n C_r =n^2 (n+3).2^(n−3) b. _n C_0 ._n C_1 +_n C_1 ._n C_2 +...+_n C_(n−1) ._n C_n =(((2n)!)/((n−1)!.(n+1)!))

showthata.Σnr=1r3.nCr=n2(n+3).2n3b.nC0.nC1+nC1.nC2+...+nCn1.nCn=(2n)!(n1)!.(n+1)!

Question Number 54646    Answers: 2   Comments: 0

Such That a. _(n+1) C_r =(((n+1). _n C_r )/((n−r+1))) b. _n C_0 +_n C_2 +_n C_(4...) =_n C_1 +_n C_3 +_n C_(5...) =2^(n−1)

SuchThata.n+1Cr=(n+1).nCr(nr+1)b.nC0+nC2+nC4...=nC1+nC3+nC5...=2n1

Question Number 54644    Answers: 1   Comments: 0

A= [(3,7),((−1),(−2)) ] A^(27) +A^(31) +A^(40) =...

A=[3712]A27+A31+A40=...

Question Number 54641    Answers: 0   Comments: 1

Given f(x) = ((4x + (√(4x^2 − 1)))/((√(2x + 1)) − (√(2x − 1)))) Find the value of f(13) + f(14) + f(15) + ... + f(112)

Givenf(x)=4x+4x212x+12x1Findthevalueoff(13)+f(14)+f(15)+...+f(112)

Question Number 54626    Answers: 2   Comments: 0

((1+sinx+cox)/(1+sinx−cosx))=((1−cosx)/(1+cosx))

1+sinx+cox1+sinxcosx=1cosx1+cosx

Question Number 54616    Answers: 2   Comments: 0

Question Number 54607    Answers: 1   Comments: 2

If ((u^5 +v^5 )/((u+v)^5 )) = −(1/5) , find ((u^3 +v^3 )/((u+v)^3 )) = ?

Ifu5+v5(u+v)5=15,findu3+v3(u+v)3=?

Question Number 54603    Answers: 1   Comments: 0

a,b,c ,are nonnegative real numbers and: a+b+c=1 . show that: 0≤ ab+bc+ca−2abc ≤(7/(27)) .

a,b,c,arenonnegativerealnumbersand:a+b+c=1.showthat:0ab+bc+ca2abc727.

Question Number 54602    Answers: 0   Comments: 1

in a given triangle: tg(C/2)=((a.tgA+b.tgB)/(a+b)) . define the kind of triangle.

inagiventriangle:tgC2=a.tgA+b.tgBa+b.definethekindoftriangle.

Question Number 54600    Answers: 2   Comments: 2

solve for: x 1) (√(3−x))+(√(x+1))>(1/2) 2) cos^2 x+cos^2 2x+cos^2 3x=1 3)(√(x^2 −p))+2(√(x^2 −1))=x [p∈R]

solvefor:x1)3x+x+1>122)cos2x+cos22x+cos23x=13)x2p+2x21=x[pR]

Question Number 54595    Answers: 0   Comments: 3

x+y=a z+bx=c bz+xy=d Find yz in terms of a,b,c,d.

x+y=az+bx=cbz+xy=dFindyzintermsofa,b,c,d.

Question Number 54588    Answers: 1   Comments: 0

What is : (d/dx) [ u(x) × v(x) × w(x) ] = ... and more generally, what is : (d/dx) [ Π_(i=1) ^n u_i (x)] = ... Thank you

Whatis:ddx[u(x)×v(x)×w(x)]=...andmoregenerally,whatis:ddx[ni=1ui(x)]=...Thankyou

Question Number 54586    Answers: 1   Comments: 0

(√(1−x^2 )) + (√(1−y^2 )) = a(x−y) prove that (dy/dx)=(√((1−y^2 )/(1−x^2 )))

1x2+1y2=a(xy)provethatdydx=1y21x2

Question Number 54585    Answers: 1   Comments: 1

show that ∫_0 ^∞ (x/(1+x^6 ))dx=(π/(3(√3)))

showthat0x1+x6dx=π33

Question Number 54584    Answers: 2   Comments: 0

Question Number 54582    Answers: 0   Comments: 1

Solve for x: (1/(√(x + (√x) + 1))) + (2/(√(x + (√x) − 2))) = (√(x + 1))

Solveforx:1x+x+1+2x+x2=x+1

Question Number 54578    Answers: 1   Comments: 1

A particle of mass 1.5kg rests on a rough plane inclined at 45° to the horizontal. It is maintained in equilibrium by a horizontal force of p newtons. Given that the coefficient of friction between the particle and the plane is (1/4), calculate the value of p when the particle is on the point of moving i. down the plane ii. up the plane [take g=10ms^(−2) ].

Aparticleofmass1.5kgrestsonaroughplaneinclinedat45°tothehorizontal.Itismaintainedinequilibriumbyahorizontalforceofpnewtons.Giventhatthecoefficientoffrictionbetweentheparticleandtheplaneis14,calculatethevalueofpwhentheparticleisonthepointofmovingi.downtheplaneii.uptheplane[takeg=10ms2].

  Pg 1499      Pg 1500      Pg 1501      Pg 1502      Pg 1503      Pg 1504      Pg 1505      Pg 1506      Pg 1507      Pg 1508   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com