Question and Answers Forum |
AllQuestion and Answers: Page 1620 |
![]() |
f(x) = 5.687cosh((x/(5.687)))−5.687 L=∫_(-11) ^(11) (√(1+[f ′(x)]^2 ))dx |
let u_n =Σ_(k=1) ^(n−1) ((n−k)/(n−k+1)) find a equivalent of u_n (n→+∞) |
calculate Σ_(n=1) ^∞ (n/((n+1)^2 (n+2))) |
for ∣x∣<1 prove that (1/(√(1−x^2 ))) =Σ_(n=0) ^∞ (C_(2n) ^n /4^n ) x^(2n) |
prove that for ∣x∣<1 (1/(√(1+x))) =Σ_(n=0) ^∞ (((−1)^n C_(2n) ^n )/4^k ) x^(2k) |
let u_k =1−(1−(1/2^k ))^(n−1) 1)prove that Σ u_k converges 2)let f(x)=1−(1−(1/2^x ))^(n−1) with x≥0 prove that ∀p∈N Σ_(k=1) ^(p+1) u_k ≤∫_0 ^(p+1) f(x)dx≤Σ_(k=0) ^p u_k |
let B(x,y) =∫_0 ^1 t^(x−1) (1−t)^(y−1) dt withx>0and y>0 prove that B(x,y)= ((Γ(x).Γ(y))/(Γ(x+y))) |
let x>0 and y>0 and B(x,y) =∫_0 ^1 t^(x−1) (1−t)^(y−1) dt 1)prove that B(x,y)=B(y,x) 2)B(x+1,y)=(x/y) B(x,y+1) 3)B(x+1,y)=(x/(x+y))B(x,y) 4)B(x,n+1)=((n!)/(x(x+1)....(x+n))) 5)B(n,p) = (1/((n+p−1)C_(n+p−2) ^(p−1) )) |
1)calculate ∫_(1/(n+1)) ^(1/n) [(1/t)−[(1/t)]]dt 2)prove that ∫_0 ^1 [(1/t)−[(1/t)]]dt=1−γ γ is constant number of euler |
prove?that ∫_0 ^1 ((1−(1−t)^n )/t)dt =Σ_(k=1) ^n (1/k) |
prove that ∀ξ ∈]0,π[ ∣∫_ξ ^π (((sint)/t))^n dt∣≤π(((sinξ)/ξ))^n n integr natural |
calculate ∫_0 ^1 ((tln(t))/(t^2 −1))dt |
prove that ∫_0 ^1 ((t^(2p+1) ln(t))/(t^2 −1))dt =(π^2 /(24)) −(1/4)Σ_(k=1) ^p (1/k^2 ) |
prove that 1) ∫_0 ^1 ((t^p ln(t))/(t−1))dt =(π^2 /6) −Σ_(k=1) ^p (1/k^2 ) 2) ∫_0 ^1 ((t^(2p) ln(t))/(t^2 −1))dt =(π^2 /8) −Σ_(k=0) ^(p−1) (1/((2k+1)^2 )) |
1) fond ∫_0 ^1 ((ln(t))/(t^2 −1))dt 2) find ∫_0 ^1 ((ln(t))/(t^4 −1))dt |
find ∫_0 ^∞ (t^p /(e^t −1))dt with p∈N^★ |
1)prove that ∀n≥2(n inyegr) x^(2n) −1=(x−1)(x+1)Π_(k=1) ^(n−1) (x^2 −2cos(((kπ)/n))x+1) 2)find the value of ∫_0 ^π ln(x^2 −2xcost +1)dt |
prove that Σ_(k=n) ^∞ (1/k^α ) ∼ (1/((α−1)n^(α−1) ))with α>1 |
let u_0 >0 and ∀n∈N u_(n+1) =u_n +(1/u_n ) 1) prove that (u_n )is increasing and lim u_n =+∞ 2)by consideringthe functionϕ(t)=(1/(2t+x)) prove that ∀n∈N Σ_(k=1) ^n (1/(2k+x)) ≤(1/2)ln(1+((2n)/x)) 3)find a equivalent of u_n (n→+∞) |
prove by recurrence that Σ_(k=1) ^n k^4 =((n(n+1)(2n+1)(3n^2 +3n−1))/(30)) |
2a sin(((25)/a)) − 51 = 0, find a |
![]() |
If a^3 +b^3 =0, prove that log (a+b)=(1/2)(log a +log b +log 3) [given a+b≠0] |
If a^3 +b^3 =0, prove that log (a+b)=(1/2)(log a +log b +log 3) [given a+b≠0] |
fnd ∫ (1+(1/x^2 ))arctan(x−(1/x))dx . |
Pg 1615 Pg 1616 Pg 1617 Pg 1618 Pg 1619 Pg 1620 Pg 1621 Pg 1622 Pg 1623 Pg 1624 |