Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1620

Question Number 40910    Answers: 1   Comments: 0

Question Number 40906    Answers: 2   Comments: 1

f(x) = 5.687cosh((x/(5.687)))−5.687 L=∫_(-11) ^(11) (√(1+[f ′(x)]^2 ))dx

f(x)=5.687cosh(x5.687)5.687L=11111+[f(x)]2dx

Question Number 40898    Answers: 2   Comments: 1

let u_n =Σ_(k=1) ^(n−1) ((n−k)/(n−k+1)) find a equivalent of u_n (n→+∞)

letun=k=1n1nknk+1findaequivalentofun(n+)

Question Number 40897    Answers: 0   Comments: 1

calculate Σ_(n=1) ^∞ (n/((n+1)^2 (n+2)))

calculaten=1n(n+1)2(n+2)

Question Number 40896    Answers: 0   Comments: 0

for ∣x∣<1 prove that (1/(√(1−x^2 ))) =Σ_(n=0) ^∞ (C_(2n) ^n /4^n ) x^(2n)

forx∣<1provethat11x2=n=0C2nn4nx2n

Question Number 40895    Answers: 0   Comments: 0

prove that for ∣x∣<1 (1/(√(1+x))) =Σ_(n=0) ^∞ (((−1)^n C_(2n) ^n )/4^k ) x^(2k)

provethatforx∣<111+x=n=0(1)nC2nn4kx2k

Question Number 40893    Answers: 0   Comments: 0

let u_k =1−(1−(1/2^k ))^(n−1) 1)prove that Σ u_k converges 2)let f(x)=1−(1−(1/2^x ))^(n−1) with x≥0 prove that ∀p∈N Σ_(k=1) ^(p+1) u_k ≤∫_0 ^(p+1) f(x)dx≤Σ_(k=0) ^p u_k

letuk=1(112k)n11)provethatΣukconverges2)letf(x)=1(112x)n1withx0provethatpNk=1p+1uk0p+1f(x)dxk=0puk

Question Number 40892    Answers: 0   Comments: 0

let B(x,y) =∫_0 ^1 t^(x−1) (1−t)^(y−1) dt withx>0and y>0 prove that B(x,y)= ((Γ(x).Γ(y))/(Γ(x+y)))

letB(x,y)=01tx1(1t)y1dtwithx>0andy>0provethatB(x,y)=Γ(x).Γ(y)Γ(x+y)

Question Number 40891    Answers: 0   Comments: 1

let x>0 and y>0 and B(x,y) =∫_0 ^1 t^(x−1) (1−t)^(y−1) dt 1)prove that B(x,y)=B(y,x) 2)B(x+1,y)=(x/y) B(x,y+1) 3)B(x+1,y)=(x/(x+y))B(x,y) 4)B(x,n+1)=((n!)/(x(x+1)....(x+n))) 5)B(n,p) = (1/((n+p−1)C_(n+p−2) ^(p−1) ))

letx>0andy>0andB(x,y)=01tx1(1t)y1dt1)provethatB(x,y)=B(y,x)2)B(x+1,y)=xyB(x,y+1)3)B(x+1,y)=xx+yB(x,y)4)B(x,n+1)=n!x(x+1)....(x+n)5)B(n,p)=1(n+p1)Cn+p2p1

Question Number 40890    Answers: 0   Comments: 2

1)calculate ∫_(1/(n+1)) ^(1/n) [(1/t)−[(1/t)]]dt 2)prove that ∫_0 ^1 [(1/t)−[(1/t)]]dt=1−γ γ is constant number of euler

1)calculate1n+11n[1t[1t]]dt2)provethat01[1t[1t]]dt=1γγisconstantnumberofeuler

Question Number 40889    Answers: 1   Comments: 0

prove?that ∫_0 ^1 ((1−(1−t)^n )/t)dt =Σ_(k=1) ^n (1/k)

prove?that011(1t)ntdt=k=1n1k

Question Number 40888    Answers: 0   Comments: 0

prove that ∀ξ ∈]0,π[ ∣∫_ξ ^π (((sint)/t))^n dt∣≤π(((sinξ)/ξ))^n n integr natural

provethatξ]0,π[ξπ(sintt)ndt∣⩽π(sinξξ)nnintegrnatural

Question Number 40887    Answers: 0   Comments: 1

calculate ∫_0 ^1 ((tln(t))/(t^2 −1))dt

calculate01tln(t)t21dt

Question Number 40886    Answers: 0   Comments: 0

prove that ∫_0 ^1 ((t^(2p+1) ln(t))/(t^2 −1))dt =(π^2 /(24)) −(1/4)Σ_(k=1) ^p (1/k^2 )

provethat01t2p+1ln(t)t21dt=π22414k=1p1k2

Question Number 40885    Answers: 0   Comments: 1

prove that 1) ∫_0 ^1 ((t^p ln(t))/(t−1))dt =(π^2 /6) −Σ_(k=1) ^p (1/k^2 ) 2) ∫_0 ^1 ((t^(2p) ln(t))/(t^2 −1))dt =(π^2 /8) −Σ_(k=0) ^(p−1) (1/((2k+1)^2 ))

provethat1)01tpln(t)t1dt=π26k=1p1k22)01t2pln(t)t21dt=π28k=0p11(2k+1)2

Question Number 40884    Answers: 2   Comments: 0

1) fond ∫_0 ^1 ((ln(t))/(t^2 −1))dt 2) find ∫_0 ^1 ((ln(t))/(t^4 −1))dt

1)fond01ln(t)t21dt2)find01ln(t)t41dt

Question Number 40883    Answers: 1   Comments: 0

find ∫_0 ^∞ (t^p /(e^t −1))dt with p∈N^★

find0tpet1dtwithpN

Question Number 40882    Answers: 0   Comments: 0

1)prove that ∀n≥2(n inyegr) x^(2n) −1=(x−1)(x+1)Π_(k=1) ^(n−1) (x^2 −2cos(((kπ)/n))x+1) 2)find the value of ∫_0 ^π ln(x^2 −2xcost +1)dt

1)provethatn2(ninyegr)x2n1=(x1)(x+1)k=1n1(x22cos(kπn)x+1)2)findthevalueof0πln(x22xcost+1)dt

Question Number 40880    Answers: 0   Comments: 0

prove that Σ_(k=n) ^∞ (1/k^α ) ∼ (1/((α−1)n^(α−1) ))with α>1

provethatk=n1kα1(α1)nα1withα>1

Question Number 40878    Answers: 0   Comments: 0

let u_0 >0 and ∀n∈N u_(n+1) =u_n +(1/u_n ) 1) prove that (u_n )is increasing and lim u_n =+∞ 2)by consideringthe functionϕ(t)=(1/(2t+x)) prove that ∀n∈N Σ_(k=1) ^n (1/(2k+x)) ≤(1/2)ln(1+((2n)/x)) 3)find a equivalent of u_n (n→+∞)

letu0>0andnNun+1=un+1un1)provethat(un)isincreasingandlimun=+2)byconsideringthefunctionφ(t)=12t+xprovethatnNk=1n12k+x12ln(1+2nx)3)findaequivalentofun(n+)

Question Number 40876    Answers: 0   Comments: 0

prove by recurrence that Σ_(k=1) ^n k^4 =((n(n+1)(2n+1)(3n^2 +3n−1))/(30))

provebyrecurrencethatk=1nk4=n(n+1)(2n+1)(3n2+3n1)30

Question Number 40875    Answers: 1   Comments: 0

2a sin(((25)/a)) − 51 = 0, find a

2asin(25a)51=0,finda

Question Number 40874    Answers: 0   Comments: 0

Question Number 40873    Answers: 1   Comments: 0

If a^3 +b^3 =0, prove that log (a+b)=(1/2)(log a +log b +log 3) [given a+b≠0]

Ifa3+b3=0,provethatlog(a+b)=12(loga+logb+log3)[givena+b0]

Question Number 40872    Answers: 1   Comments: 2

If a^3 +b^3 =0, prove that log (a+b)=(1/2)(log a +log b +log 3) [given a+b≠0]

Ifa3+b3=0,provethatlog(a+b)=12(loga+logb+log3)[givena+b0]

Question Number 40870    Answers: 1   Comments: 1

fnd ∫ (1+(1/x^2 ))arctan(x−(1/x))dx .

fnd(1+1x2)arctan(x1x)dx.

  Pg 1615      Pg 1616      Pg 1617      Pg 1618      Pg 1619      Pg 1620      Pg 1621      Pg 1622      Pg 1623      Pg 1624   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com