Question and Answers Forum |
AllQuestion and Answers: Page 1627 |
calculate lim_(x→0) ((2x)/(ln(((1+x)/(1−x))))) −cosx |
calculate lim_(x→0) (1/(sin^4 x)){ sin((x/(1−x)))−((sinx)/(1−sinx))} |
let f(x) = ((e^x^2 −1)/x) if x≠0 and f(0)=0 prove that f^(−1) (x)=x−(x^3 /2) +o(x^3 ) (x→0) |
let f(x)= ((e^x −1)/x) if x≠0 and f(0)=1 give ∫_0 ^1 f(x)dx at form of serie. |
let g(x)= cos(x+1) developp g at integr serie |
let f(x)=ln(2+x) 1) give D_n (0) of f 2) developp f at integr serie |
calculate lim_(x→0^+ ) { tan((π/(2+x)))}^x |
find lim _(x→0) ((a^x −b^x )/(e^(ax) −e^(bx) )) with a>0 b>0 and a≠b |
find lim_(x→+∞) x{(1+a)^(1/x) −a^(1/x) } (a>0) |
find lim_(x→+∞) x{(1+a)^(1/x) −a^(1/x) } (a>0) |
calculate lim_(x→(π/2)) (sinx)^(ln∣x−(π/2)∣) |
prove the relations 1) ∀t ∈]0,1] arctan(((√(1−t^2 ))/t))=arccost 2) ∀ t∈[−1,1] 2 arccos(√((1+t)/2)) =arccost |
study and give the graph for the function f(x)= (x/(x−1)) e^(1/x) |
let f(x) = x^n e^(−2nx) with n integr natural calculate f^((n)) (0). |
find number of solution for the equation (e^x /(2(x+1)^2 )) =1 . |
let g(x)=(√(−x+(√(1+x^2 )))) 1) prove that g is solution for the differencial equation 4(1+x^2 )y^(′′) +4xy^′ −y =0 .prove that g is C^∞ on R 2) determine a relation between g^((n)) (0) and g^((n+2)) (0) |
let f(x) = ((∣x∣)/((1+∣1−x^2 ∣)^n )) study tbe derivability of f at points 0 and 1 (n natural integr) |
study the variation of f(x)=arcsin(2x(√(1−x^2 )) ) and give its graph |
solve arctan(2x) +arctan(3x)=(π/4) |
solve arcsin(((2x)/(1+x^2 ))) =(π/3) |
solve arcsin(sinx) =(π/9) |
let f(x)=ln(√((2+x)/(2−x))) 1) find D_f and find the assymptotes to C_f 2) calculate f^′ (x) and give the variation of f 3) give the graph of f 4) give the equation of tangent to C_(f ) at point E((1/2),f((1/2))) 5) calculate ∫_0 ^1 f(x)dx . |
let f(x) =cos(x)cos((1/x)) is f have a limit at point 0? |
find lim _(x→0^+ ) ln(x)tan{ln(1+x)} |
find lim _(x→0) ((ln(cosx))/(1−cos(2x))) |
calculate lim_(x→+∞) (1/x) tan(((πx)/(2x+3))) |
Pg 1622 Pg 1623 Pg 1624 Pg 1625 Pg 1626 Pg 1627 Pg 1628 Pg 1629 Pg 1630 Pg 1631 |