Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1627

Question Number 40118    Answers: 0   Comments: 1

calculate lim_(x→0) ((2x)/(ln(((1+x)/(1−x))))) −cosx

calculatelimx02xln(1+x1x)cosx

Question Number 40117    Answers: 0   Comments: 0

calculate lim_(x→0) (1/(sin^4 x)){ sin((x/(1−x)))−((sinx)/(1−sinx))}

calculatelimx01sin4x{sin(x1x)sinx1sinx}

Question Number 40116    Answers: 0   Comments: 0

let f(x) = ((e^x^2 −1)/x) if x≠0 and f(0)=0 prove that f^(−1) (x)=x−(x^3 /2) +o(x^3 ) (x→0)

letf(x)=ex21xifx0andf(0)=0provethatf1(x)=xx32+o(x3)(x0)

Question Number 40115    Answers: 0   Comments: 2

let f(x)= ((e^x −1)/x) if x≠0 and f(0)=1 give ∫_0 ^1 f(x)dx at form of serie.

letf(x)=ex1xifx0andf(0)=1give01f(x)dxatformofserie.

Question Number 40114    Answers: 0   Comments: 1

let g(x)= cos(x+1) developp g at integr serie

letg(x)=cos(x+1)developpgatintegrserie

Question Number 40113    Answers: 0   Comments: 2

let f(x)=ln(2+x) 1) give D_n (0) of f 2) developp f at integr serie

letf(x)=ln(2+x)1)giveDn(0)off2)developpfatintegrserie

Question Number 40112    Answers: 0   Comments: 0

calculate lim_(x→0^+ ) { tan((π/(2+x)))}^x

calculatelimx0+{tan(π2+x)}x

Question Number 40111    Answers: 0   Comments: 0

find lim _(x→0) ((a^x −b^x )/(e^(ax) −e^(bx) )) with a>0 b>0 and a≠b

findlimx0axbxeaxebxwitha>0b>0andab

Question Number 40110    Answers: 0   Comments: 0

find lim_(x→+∞) x{(1+a)^(1/x) −a^(1/x) } (a>0)

findlimx+x{(1+a)1xa1x}(a>0)

Question Number 40109    Answers: 0   Comments: 0

find lim_(x→+∞) x{(1+a)^(1/x) −a^(1/x) } (a>0)

findlimx+x{(1+a)1xa1x}(a>0)

Question Number 40108    Answers: 0   Comments: 0

calculate lim_(x→(π/2)) (sinx)^(ln∣x−(π/2)∣)

calculatelimxπ2(sinx)lnxπ2

Question Number 40107    Answers: 1   Comments: 0

prove the relations 1) ∀t ∈]0,1] arctan(((√(1−t^2 ))/t))=arccost 2) ∀ t∈[−1,1] 2 arccos(√((1+t)/2)) =arccost

provetherelations1)t]0,1]arctan(1t2t)=arccost2)t[1,1]2arccos1+t2=arccost

Question Number 40106    Answers: 1   Comments: 0

study and give the graph for the function f(x)= (x/(x−1)) e^(1/x)

studyandgivethegraphforthefunctionf(x)=xx1e1x

Question Number 40105    Answers: 0   Comments: 1

let f(x) = x^n e^(−2nx) with n integr natural calculate f^((n)) (0).

letf(x)=xne2nxwithnintegrnaturalcalculatef(n)(0).

Question Number 40104    Answers: 0   Comments: 0

find number of solution for the equation (e^x /(2(x+1)^2 )) =1 .

findnumberofsolutionfortheequationex2(x+1)2=1.

Question Number 40103    Answers: 0   Comments: 0

let g(x)=(√(−x+(√(1+x^2 )))) 1) prove that g is solution for the differencial equation 4(1+x^2 )y^(′′) +4xy^′ −y =0 .prove that g is C^∞ on R 2) determine a relation between g^((n)) (0) and g^((n+2)) (0)

letg(x)=x+1+x21)provethatgissolutionforthedifferencialequation4(1+x2)y+4xyy=0.provethatgisConR2)determinearelationbetweeng(n)(0)andg(n+2)(0)

Question Number 40102    Answers: 2   Comments: 0

let f(x) = ((∣x∣)/((1+∣1−x^2 ∣)^n )) study tbe derivability of f at points 0 and 1 (n natural integr)

letf(x)=x(1+1x2)nstudytbederivabilityoffatpoints0and1(nnaturalintegr)

Question Number 40101    Answers: 0   Comments: 0

study the variation of f(x)=arcsin(2x(√(1−x^2 )) ) and give its graph

studythevariationoff(x)=arcsin(2x1x2)andgiveitsgraph

Question Number 40100    Answers: 0   Comments: 1

solve arctan(2x) +arctan(3x)=(π/4)

solvearctan(2x)+arctan(3x)=π4

Question Number 40099    Answers: 0   Comments: 0

solve arcsin(((2x)/(1+x^2 ))) =(π/3)

solvearcsin(2x1+x2)=π3

Question Number 40098    Answers: 0   Comments: 0

solve arcsin(sinx) =(π/9)

solvearcsin(sinx)=π9

Question Number 40097    Answers: 0   Comments: 2

let f(x)=ln(√((2+x)/(2−x))) 1) find D_f and find the assymptotes to C_f 2) calculate f^′ (x) and give the variation of f 3) give the graph of f 4) give the equation of tangent to C_(f ) at point E((1/2),f((1/2))) 5) calculate ∫_0 ^1 f(x)dx .

letf(x)=ln2+x2x1)findDfandfindtheassymptotestoCf2)calculatef(x)andgivethevariationoff3)givethegraphoff4)givetheequationoftangenttoCfatpointE(12,f(12))5)calculate01f(x)dx.

Question Number 40095    Answers: 1   Comments: 0

let f(x) =cos(x)cos((1/x)) is f have a limit at point 0?

letf(x)=cos(x)cos(1x)isfhavealimitatpoint0?

Question Number 40094    Answers: 0   Comments: 0

find lim _(x→0^+ ) ln(x)tan{ln(1+x)}

findlimx0+ln(x)tan{ln(1+x)}

Question Number 40093    Answers: 0   Comments: 0

find lim _(x→0) ((ln(cosx))/(1−cos(2x)))

findlimx0ln(cosx)1cos(2x)

Question Number 40092    Answers: 0   Comments: 1

calculate lim_(x→+∞) (1/x) tan(((πx)/(2x+3)))

calculatelimx+1xtan(πx2x+3)

  Pg 1622      Pg 1623      Pg 1624      Pg 1625      Pg 1626      Pg 1627      Pg 1628      Pg 1629      Pg 1630      Pg 1631   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com