Question and Answers Forum |
AllQuestion and Answers: Page 1635 |
∫2^x 3^(2x) dx=? |
∫_0 ^(2π) e^(x/2) sin ((x/2)+(π/4))dx = ? |
![]() |
find f(t)= ∫_0 ^1 ((ln(1+xt))/(1+x^2 )) dx . |
Given that θ is an obtuse angle find tan θ if cos θ =(3/5) |
calculate F(x) = ∫_0 ^∞ (dt/(1+(1+x(1+t^2 ))^2 )) |
calculate A =tan((π/5)).tan(((2π)/5)).tan(((3π)/5)).tan(((4π)/5)) |
find the value of ∫_0 ^1 ((ln(1+x))/(1+x^2 ))dx |
The values of a for which y= ax^2 +ax+(1/(24)) and x = ay^2 +ay+(1/(24)) touch each other are 1) (2/3) 2) (3/2) 3) ((13+(√(601)))/(12)) 4) ((13−(√(601)))/(12)). |
calculate ∫_0 ^(π/3) ((sinxdx)/(cosx(2+ln(cosx))) . |
![]() |
![]() |
find the value of Σ_(n=0) ^∞ (((−1)^n )/(4n+1)) |
![]() |
study the derivability of f(x)=Σ_(n=0) ^∞ (((−1)^n )/(nx +1)) |
how to calculate the product (Σ_(n=0) ^∞ a_n x^n ).(Σ_(n=0) ^∞ b_n x^(2n) )? |
![]() |
calculate I = ∫_0 ^∞ ((arctan(x^2 ))/(1+x^2 ))dx |
find the values of integrals A = ∫_(−∞) ^(+∞) cos(x^2 +x+1)dx and B = ∫_(−∞) ^(+∞) sin(x^2 +x+1)dx |
![]() |
let I (λ) = ∫_(−∞) ^(+∞) ((cos(λx))/((1+ix)^2 ))dx 1) extract Re(I(λ)) and Im(I(λ)) 2) calculate I(λ) 3) conclude the values of Re(I(λ)) and Im(I(λ)). |
1) calculate F(x)= ∫_1 ^(√x) ((arctan(t))/t^2 )dt with x≥1 2) calculate A_n = ∫_1 ^(√n) ((arctan(t))/t^2 ) dt and find lim_(n→+∞) A_n |
let F(t)= ∫_0 ^(+∞) ((sinx)/(x(1+x^2 ))) e^(−tx(1+x^2 )) dx witht≥0 1) caculate (dF/dt)(t) 2) find a simple form of F(t) 3) find the value of ∫_0 ^∞ ((sinx)/(x(1+x^2 )dx )). |
![]() |
∫ (1/(xln(x+1))) dx |
![]() |
Pg 1630 Pg 1631 Pg 1632 Pg 1633 Pg 1634 Pg 1635 Pg 1636 Pg 1637 Pg 1638 Pg 1639 |