Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1635

Question Number 39477    Answers: 1   Comments: 3

∫2^x 3^(2x) dx=?

2x32xdx=?

Question Number 39431    Answers: 1   Comments: 1

∫_0 ^(2π) e^(x/2) sin ((x/2)+(π/4))dx = ?

02πex2sin(x2+π4)dx=?

Question Number 39402    Answers: 1   Comments: 1

Question Number 39483    Answers: 0   Comments: 3

find f(t)= ∫_0 ^1 ((ln(1+xt))/(1+x^2 )) dx .

findf(t)=01ln(1+xt)1+x2dx.

Question Number 39395    Answers: 0   Comments: 2

Given that θ is an obtuse angle find tan θ if cos θ =(3/5)

Giventhatθisanobtuseanglefindtanθifcosθ=35

Question Number 39389    Answers: 0   Comments: 2

calculate F(x) = ∫_0 ^∞ (dt/(1+(1+x(1+t^2 ))^2 ))

calculateF(x)=0dt1+(1+x(1+t2))2

Question Number 39388    Answers: 1   Comments: 0

calculate A =tan((π/5)).tan(((2π)/5)).tan(((3π)/5)).tan(((4π)/5))

calculateA=tan(π5).tan(2π5).tan(3π5).tan(4π5)

Question Number 39386    Answers: 1   Comments: 1

find the value of ∫_0 ^1 ((ln(1+x))/(1+x^2 ))dx

findthevalueof01ln(1+x)1+x2dx

Question Number 39384    Answers: 2   Comments: 0

The values of a for which y= ax^2 +ax+(1/(24)) and x = ay^2 +ay+(1/(24)) touch each other are 1) (2/3) 2) (3/2) 3) ((13+(√(601)))/(12)) 4) ((13−(√(601)))/(12)).

Thevaluesofaforwhichy=ax2+ax+124andx=ay2+ay+124toucheachotherare1)232)323)13+601124)1360112.

Question Number 39383    Answers: 1   Comments: 1

calculate ∫_0 ^(π/3) ((sinxdx)/(cosx(2+ln(cosx))) .

calculate0π3sinxdxcosx(2+ln(cosx).

Question Number 39382    Answers: 1   Comments: 0

Question Number 39381    Answers: 1   Comments: 0

Question Number 39380    Answers: 0   Comments: 0

find the value of Σ_(n=0) ^∞ (((−1)^n )/(4n+1))

findthevalueofn=0(1)n4n+1

Question Number 39379    Answers: 1   Comments: 6

Question Number 39378    Answers: 0   Comments: 1

study the derivability of f(x)=Σ_(n=0) ^∞ (((−1)^n )/(nx +1))

studythederivabilityoff(x)=n=0(1)nnx+1

Question Number 39376    Answers: 0   Comments: 0

how to calculate the product (Σ_(n=0) ^∞ a_n x^n ).(Σ_(n=0) ^∞ b_n x^(2n) )?

howtocalculatetheproduct(n=0anxn).(n=0bnx2n)?

Question Number 39375    Answers: 0   Comments: 1

Question Number 39374    Answers: 0   Comments: 2

calculate I = ∫_0 ^∞ ((arctan(x^2 ))/(1+x^2 ))dx

calculateI=0arctan(x2)1+x2dx

Question Number 39373    Answers: 0   Comments: 1

find the values of integrals A = ∫_(−∞) ^(+∞) cos(x^2 +x+1)dx and B = ∫_(−∞) ^(+∞) sin(x^2 +x+1)dx

findthevaluesofintegralsA=+cos(x2+x+1)dxandB=+sin(x2+x+1)dx

Question Number 39371    Answers: 2   Comments: 1

Question Number 39370    Answers: 0   Comments: 1

let I (λ) = ∫_(−∞) ^(+∞) ((cos(λx))/((1+ix)^2 ))dx 1) extract Re(I(λ)) and Im(I(λ)) 2) calculate I(λ) 3) conclude the values of Re(I(λ)) and Im(I(λ)).

letI(λ)=+cos(λx)(1+ix)2dx1)extractRe(I(λ))andIm(I(λ))2)calculateI(λ)3)concludethevaluesofRe(I(λ))andIm(I(λ)).

Question Number 39369    Answers: 0   Comments: 1

1) calculate F(x)= ∫_1 ^(√x) ((arctan(t))/t^2 )dt with x≥1 2) calculate A_n = ∫_1 ^(√n) ((arctan(t))/t^2 ) dt and find lim_(n→+∞) A_n

1)calculateF(x)=1xarctan(t)t2dtwithx12)calculateAn=1narctan(t)t2dtandfindlimn+An

Question Number 39368    Answers: 0   Comments: 1

let F(t)= ∫_0 ^(+∞) ((sinx)/(x(1+x^2 ))) e^(−tx(1+x^2 )) dx witht≥0 1) caculate (dF/dt)(t) 2) find a simple form of F(t) 3) find the value of ∫_0 ^∞ ((sinx)/(x(1+x^2 )dx )).

letF(t)=0+sinxx(1+x2)etx(1+x2)dxwitht01)caculatedFdt(t)2)findasimpleformofF(t)3)findthevalueof0sinxx(1+x2)dx.

Question Number 39365    Answers: 0   Comments: 1

Question Number 39357    Answers: 0   Comments: 0

∫ (1/(xln(x+1))) dx

1xln(x+1)dx

Question Number 39349    Answers: 1   Comments: 1

  Pg 1630      Pg 1631      Pg 1632      Pg 1633      Pg 1634      Pg 1635      Pg 1636      Pg 1637      Pg 1638      Pg 1639   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com