Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1637

Question Number 39166    Answers: 1   Comments: 1

Find the value of k if (2,k) ,(3,4) and (6,4) are collinear. hence find the equation on the line 3i − j with the above points

Findthevalueofkif(2,k),(3,4)and(6,4)arecollinear.hencefindtheequationontheline3ijwiththeabovepoints

Question Number 39165    Answers: 0   Comments: 4

calculate ∫_0 ^∞ (dt/(1+t^(4 ) +t^6 ))

calculate0dt1+t4+t6

Question Number 39170    Answers: 0   Comments: 0

Find the value of k if (d/dx)(f(x))= 6 when x = −1 and f(x) = 3x^3 − kx^2 + 1 if f(2) = 8 find one factor of f(x) and hence Evaluate lim_(x→∞) (f(x)).

Findthevalueofkifddx(f(x))=6whenx=1andf(x)=3x3kx2+1iff(2)=8findonefactoroff(x)andhenceEvaluatelimx(f(x)).

Question Number 39156    Answers: 1   Comments: 0

Question Number 39142    Answers: 1   Comments: 0

F(x) = x^3 −9x^2 +24x+c=0 has three real and distinct roots α , β & γ . Q.1 → Possible value of c is : Q.2 → If [α]+[β]+[γ]= 8 then c is : Q.3 → If [α]+[β]+[γ]=7 then c is : Options for the above 3 Q. → a) (−20,−16) b) (−20,−18) c) (−18,−16) d) none of these. [.] = greatest integer function.

F(x)=x39x2+24x+c=0hasthreerealanddistinctrootsα,β&γ.Q.1Possiblevalueofcis:Q.2If[α]+[β]+[γ]=8thencis:Q.3If[α]+[β]+[γ]=7thencis:Optionsfortheabove3Q.a)(20,16)b)(20,18)c)(18,16)d)noneofthese.[.]=greatestintegerfunction.

Question Number 39135    Answers: 1   Comments: 2

calculate A(λ) = ∫_0 ^λ ((ln(x+(√(1+x^2 ))))/(√(1+x^2 ))) dx 2) calculate ∫_0 ^1 ((ln(x+(√(1+x^2 ))))/(√(1+x^2 )))dx

calculateA(λ)=0λln(x+1+x2)1+x2dx2)calculate01ln(x+1+x2)1+x2dx

Question Number 39127    Answers: 0   Comments: 1

Given the lines l_1 : x + y = 5 and l_2 : y = 4x and l_3 ; 4x + y − 1 =0 show that l_(2 ) is perpendicular to l_3 . find the point coordinates if x + 2y = 5 is colliner to l_1

Giventhelinesl1:x+y=5andl2:y=4xandl3;4x+y1=0showthatl2isperpendiculartol3.findthepointcoordinatesifx+2y=5iscollinertol1

Question Number 39144    Answers: 1   Comments: 0

f(x) = 3x^3 − 2x + k has factor (x − 1) find the value of k. with these value evaluate a) (d/(dx ))(f(x)_ ) b) ∫_5 ^2 (f(x))

f(x)=3x32x+khasfactor(x1)findthevalueofk.withthesevalueevaluatea)ddx(f(x))b)52(f(x))

Question Number 39121    Answers: 0   Comments: 5

Find domain of (1+(1/x))^x ? Also prove thatL_(x→0^+ ) (1+(1/x))^x = 1 ?

Finddomainof(1+1x)x?AlsoprovethatLx0+(1+1x)x=1?

Question Number 39120    Answers: 1   Comments: 1

let A_n = ∫_1 ^n (([(√(1+x^2 ))] −[x])/x^2 ) dx (n integr ≥1) 1) calculate A_n 2) find lim_(n→+∞) A_n

letAn=1n[1+x2][x]x2dx(nintegr1)1)calculateAn2)findlimn+An

Question Number 39119    Answers: 0   Comments: 1

calculate ∫_(−∞) ^(+∞) ((x^2 cos(4x))/((x^2 +1)^2 ))dx

calculate+x2cos(4x)(x2+1)2dx

Question Number 39104    Answers: 1   Comments: 1

Question Number 39089    Answers: 2   Comments: 1

Question Number 39078    Answers: 1   Comments: 2

Without using l′hopital find lim_(x→3) ((√(9−x^2 ))/(x−3))

Withoutusinglhopitalfindlimx39x2x3

Question Number 39072    Answers: 2   Comments: 1

Question Number 39067    Answers: 2   Comments: 7

Question Number 39059    Answers: 1   Comments: 0

Question Number 39058    Answers: 1   Comments: 1

Question Number 39055    Answers: 1   Comments: 0

Question Number 39040    Answers: 0   Comments: 0

find F(x) = ∫_0 ^π ln(x^2 −2x sin(2θ) +1)dθ .

findF(x)=0πln(x22xsin(2θ)+1)dθ.

Question Number 39039    Answers: 0   Comments: 2

let f(x) =(1/(1+∣sinx∣)) (2π periodic even) developp f at fourier serie .

letf(x)=11+sinx(2πperiodiceven)developpfatfourierserie.

Question Number 39038    Answers: 0   Comments: 2

let f(z) = (z/(z^2 −z+2)) developp f at integr serie.

letf(z)=zz2z+2developpfatintegrserie.

Question Number 39037    Answers: 0   Comments: 2

calculate F(x)=∫_0 ^(2π) ((cos(4t))/(x^2 −2x cost +1)) dt

calculateF(x)=02πcos(4t)x22xcost+1dt

Question Number 39035    Answers: 0   Comments: 1

find f(t) =∫_0 ^∞ sin(x)e^(−t [x]) dx with t>0

findf(t)=0sin(x)et[x]dxwitht>0

Question Number 39034    Answers: 0   Comments: 1

calculate interms of n A_n = ∫_0 ^(2π) ((cos(nx))/(cosx +sinx))dx and B_n = ∫_0 ^(2π) ((sin(nx))/(cosx +sinx))dx .

calculateintermsofnAn=02πcos(nx)cosx+sinxdxandBn=02πsin(nx)cosx+sinxdx.

Question Number 39033    Answers: 0   Comments: 2

calculate ∫_(−∞) ^(+∞) ((xsin(2x))/((1+x^2 )^2 ))dx

calculate+xsin(2x)(1+x2)2dx

  Pg 1632      Pg 1633      Pg 1634      Pg 1635      Pg 1636      Pg 1637      Pg 1638      Pg 1639      Pg 1640      Pg 1641   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com