Question and Answers Forum |
AllQuestion and Answers: Page 1664 |
![]() |
![]() |
![]() |
calculate lim_(a→0^+ ) ∫_(−a) ^a (√((1+x^2 )/(a^2 −x^2 ))) dx . |
let B_n =Σ_(k=1) ^n sin(((kπ)/n)) sin((k/n^2 )) find lim_(n→+∞) B_n |
let S_n = Σ_(k=1) ^n (k^2 /(n^2 (√(n^2 +k^2 )))) find lim_(n→+∞) S_n |
let A_n =Σ_(k=1) ^n (1/(k+n))ln(1+(k/n)) calculate lim_(n→+∞) A_n |
calculate f(a)=∫_0 ^π (dx/(1−a cosx)) a from R . 2) application calculate ∫_0 ^π (dx/(1−2cosx)) |
calculate ∫_(√3) ^(+∞) (dx/(x(√( 2+x^2 )))) . |
calculate ∫_0 ^(π/4) x artan(2x+1)dx |
calculate I = ∫_0 ^1 e^(2t) ln(1+e^t )dt |
find ∫ x^2 ln(x^6 −1)dx |
let F(x) = ∫_(x +1) ^(x^2 +1) arctan(1+t)dt 1) calculate (∂F/∂x)(x) 2) find lim_(x→0) F(x) . |
find ∫ arctan(x)dx |
by using residus theorem calculate W_n =∫_0 ^(π/2) cos^(2n) t dt ( wallis integal) n integr natural . |
let f(t) =∫_0 ^∞ ((e^(−tx^2 ) arctan(x^2 ))/x^2 )dx with t>0 1) study the existencte of f(t) 2)calculate f^′ (t) 3)find a simple form of f(t). |
find F(x)=∫_0 ^x e^(−2t) cos(t+(π/4))dx. |
find f(x)=∫_0 ^x ch^4 t dt |
calculate ∫_1 ^3 (x/(e^x −1))dx .. |
Following alphabet lacks one letter. abcdefghijklmnopqrstuvxyz I request that letter, please come and make the alphabet complete. |
if cos^2 θ−sin^2 θ=tan^2 ∅ Then proof that 2cos^2 ∅−1=cos^2 ∅−sin^2 ∅=2tan^2 θ |
If y= (√((a−x)(x−b)))−(a−b)tan^(−1) ((((a−x)/(x−b)))^(0.5) ). Then find (dy/dx) ? |
A panel of 3 women and 4 men is to be formed from 8 women and 7 men.Find the number of ways which the panel can be formed if it must contain at least 2 women. |
Three boys,two girls and a puppy sit at a round table.In how many ways can they be arranged if the puppy is to be seated i)between the two girls ii)between any two boys |
![]() |
let f(x)= ((sin(2x))/x) χ_(]−a,a[) (x) with a>0 calculate the fourier trsnsform of f . |
Pg 1659 Pg 1660 Pg 1661 Pg 1662 Pg 1663 Pg 1664 Pg 1665 Pg 1666 Pg 1667 Pg 1668 |