Question and Answers Forum |
AllQuestion and Answers: Page 1667 |
Suppose a_1 ,...,a_n ,are non−negative reals such that S= a_1 +...+a_n < proof that 1 + S≤ (1 + a_1 )._(...) .(1+ a_n ) ≤ (1/(1−s)) |
x^4 +10x^3 +6x−1=0 for those who want an exact solution... (x−a−bi)(x−a+bi)(x−c−d)(x−c+d)=0 x^4 −2(a+c)x^3 +(a^2 +4ac+b^2 +c^2 −d^2 )x^2 − −2(a(c^2 −d^2 )+c(a^2 +b^2 ))x+(a^2 +b^2 )(c^2 −d^2 )=0 1. −2(a+c)=10 2. a^2 +4ac+b^2 +c^2 −d^2 =0 3. −2(a(c^2 −d^2 )+c(a^2 +b^2 ))=6 4. (a^2 +b^2 )(c^2 −d^2 )=−1 1. a=−c−5e 2. b=(√(−a^2 +4ac−c^2 +d^2 ))=(√(2c^2 +10c+d^2 −25)) 3. d=(√(ac+c^2 +((b^2 c+3)/a)))=(√(−((2c^3 +15c^2 +3)/(2c+5)))) 2. b=(√((2c^3 +15c^2 −128)/(2c+5))) 4. 4c^4 +40c^3 +75c^2 −125c+((689)/4)−((17161)/(4(2c+5)^2 ))=0 64(c^6 +15c^5 +75c^4 +125c^3 +4c^2 +20c+1)=0 c^6 +15c^5 +75c^4 +125c^3 +4c^2 +20c+1=0 c=u−((15)/6) u^6 −((75)/4)u^4 +((1939)/(16))u^2 −((17161)/(64))=0 u=(√v) v^3 −((75)/4)v^2 +((1939)/(16))v−((17161)/(64))=0 v=w+((75)/(12)) w^3 +4w+1=0 w=((−(q/2)+(√((p^3 /(27))+(q^2 /4)))))^(1/3) +((−(q/2)−(√((p^3 /(27))+(q^2 /4)))))^(1/3) = =((−(1/2)+((√(849))/(18))))^(1/3) +((−(1/2)−((√(849))/(18))))^(1/3) and now we have to go all the way back... not very friendly... as I mentioned before, it′s almost (or maybe absolutely) impossible to find a nicer exact form of w, so let me use the approximation w≈−.246266 v=((25)/4)+w≈6.00373 u=((√(25+4w))/2)≈2.45025 c=−(5/2)+((√(25+4w))/2)≈−.0497482 d=(√(((25)/2)−w−((131)/(2(√(25+4w))))))≈.787215i a=−(5/2)−((√(25+4w))/2)≈−4.95025 b=(√(−((25)/2)+w+((131)/(2(√(25+4w))))))≈5.11001i x_1 =a+bi≈−10.0603 x_2 =a−bi≈.159762 x_3 =c+d≈−.0497482+.787215i x_4 =c−d≈−.0497482−.787215i |
calculate ∫_0 ^∞ ((x^2 −1)/((x^2 +1)^2 )) x^(1/3) dx |
find the value of ∫_0 ^∞ ((x^2 −1)/(x^2 +1)) ((sin(x))/x)dx |
let f(t) = ∫_0 ^∞ ((cos(tx))/((2+x^2 )^2 ))dx 1) find a simple form of f(t) 2) calculate ∫_0 ^∞ ((cos(3x))/((2+x^2 )^2 ))dx |
calculate ∫_0 ^∞ ((x^2 dx)/((x^2 +1)^3 )) |
calculate ∫_0 ^(π/2) (dθ/(1+2sin^2 θ)) |
calculate ∫_0 ^(2π) (dθ/((2+cosθ)^2 )) |
let f(z) = ((z^2 +1)/(z^4 −1)) find (a_(k)) the poles of f and calculate Res(f,a_k ) |
find the value of ∫_0 ^(2π) (dx/(cos^2 x +3 sin^2 x)) |
let ρ>0 and C the circle x^2 +y^2 =ρ^2 calculate ∫_C ydx +xy dy |
let C ={(x,y)∈R^2 / 0≤x≤1 and y=2x^2 } calculate ∫_C x^2 ydx +(x^2 −y^2 )dy |
let D ={(x,y,z)∈R^2 / 0<z<1 and x^2 +y^2 <z^2 } calculate ∫∫_D xyzdxdydz |
let D ={(x,y)∈ R^2 / x^2 +y^2 −x<0 and x^2 +y^2 −y >0 and y>0} calculate∫∫_D (x+y)^2 dxdy |
let D ={(x,y)∈ R^2 /x^2 +y^2 <1} find the value of ∫∫_D ((dxdy)/(x^2 +y^(2 ) + 2)) |
let D = {(x,y)∈R^2 /x>0 ,y>0,x+y<1} 1) calculate ∫∫_D ((xy)/(x^2 +y^2 ))dxdy 2) let a>0 ,b>0 calculate ∫∫_D a^x b^y dxdy |
calculate ∫∫_D (x+y)e^(x+y) dxdy with D = {(x,y)∈R^2 / 0<x<2 and 1<y<2 } |
let F(x)=∫_0 ^∞ ((e^(−x^2 t) (√t))/(1+t^2 ))dt calculate lim_(x→+∞) F(x) . |
find the value of ∫_0 ^∞ ((√t)/(1+t^2 ))dt |
let I_n (x)= ∫_0 ^∞ ((t sin(t))/((t^2 +x^2 )^n ))dt 1) find a relation between I_(n+1) and I_n 2) calculate I_2 (x) and I_3 (x) 3) calculate ∫_0 ^∞ ((tsin(t))/((2+t^2 )^2 ))dt |
find nature of ∫_1 ^(+∞) (√t) sin(t^2 )dt . |
study the vonvergence of ∫_1 ^(+∞) ((e^(−(1/t)) −cos((1/t)))/t)dt |
study the convergence of ∫_1 ^(+∞) ((cos(t))/(√t))dt |
calculate ∫_1 ^(+∞) arctan((1/t))dt |
calculate ∫_1 ^(+∞) (dt/(t(√(1+t^2 )))) |
let I(ξ) = ∫_ξ ^(1−ξ) (dt/(1−(t−ξ)^2 )) find lim_(ξ→0^+ ) I(ξ) |
Pg 1662 Pg 1663 Pg 1664 Pg 1665 Pg 1666 Pg 1667 Pg 1668 Pg 1669 Pg 1670 Pg 1671 |