Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1667

Question Number 36217    Answers: 1   Comments: 0

Suppose a_1 ,...,a_n ,are non−negative reals such that S= a_1 +...+a_n < proof that 1 + S≤ (1 + a_1 )._(...) .(1+ a_n ) ≤ (1/(1−s))

Supposea1,...,an,arenonnegativerealssuchthatS=a1+...+an<proofthat1+S(1+a1).....(1+an)11s

Question Number 36207    Answers: 0   Comments: 4

x^4 +10x^3 +6x−1=0 for those who want an exact solution... (x−a−bi)(x−a+bi)(x−c−d)(x−c+d)=0 x^4 −2(a+c)x^3 +(a^2 +4ac+b^2 +c^2 −d^2 )x^2 − −2(a(c^2 −d^2 )+c(a^2 +b^2 ))x+(a^2 +b^2 )(c^2 −d^2 )=0 1. −2(a+c)=10 2. a^2 +4ac+b^2 +c^2 −d^2 =0 3. −2(a(c^2 −d^2 )+c(a^2 +b^2 ))=6 4. (a^2 +b^2 )(c^2 −d^2 )=−1 1. a=−c−5e 2. b=(√(−a^2 +4ac−c^2 +d^2 ))=(√(2c^2 +10c+d^2 −25)) 3. d=(√(ac+c^2 +((b^2 c+3)/a)))=(√(−((2c^3 +15c^2 +3)/(2c+5)))) 2. b=(√((2c^3 +15c^2 −128)/(2c+5))) 4. 4c^4 +40c^3 +75c^2 −125c+((689)/4)−((17161)/(4(2c+5)^2 ))=0 64(c^6 +15c^5 +75c^4 +125c^3 +4c^2 +20c+1)=0 c^6 +15c^5 +75c^4 +125c^3 +4c^2 +20c+1=0 c=u−((15)/6) u^6 −((75)/4)u^4 +((1939)/(16))u^2 −((17161)/(64))=0 u=(√v) v^3 −((75)/4)v^2 +((1939)/(16))v−((17161)/(64))=0 v=w+((75)/(12)) w^3 +4w+1=0 w=((−(q/2)+(√((p^3 /(27))+(q^2 /4)))))^(1/3) +((−(q/2)−(√((p^3 /(27))+(q^2 /4)))))^(1/3) = =((−(1/2)+((√(849))/(18))))^(1/3) +((−(1/2)−((√(849))/(18))))^(1/3) and now we have to go all the way back... not very friendly... as I mentioned before, it′s almost (or maybe absolutely) impossible to find a nicer exact form of w, so let me use the approximation w≈−.246266 v=((25)/4)+w≈6.00373 u=((√(25+4w))/2)≈2.45025 c=−(5/2)+((√(25+4w))/2)≈−.0497482 d=(√(((25)/2)−w−((131)/(2(√(25+4w))))))≈.787215i a=−(5/2)−((√(25+4w))/2)≈−4.95025 b=(√(−((25)/2)+w+((131)/(2(√(25+4w))))))≈5.11001i x_1 =a+bi≈−10.0603 x_2 =a−bi≈.159762 x_3 =c+d≈−.0497482+.787215i x_4 =c−d≈−.0497482−.787215i

x4+10x3+6x1=0forthosewhowantanexactsolution...(xabi)(xa+bi)(xcd)(xc+d)=0x42(a+c)x3+(a2+4ac+b2+c2d2)x22(a(c2d2)+c(a2+b2))x+(a2+b2)(c2d2)=01.2(a+c)=102.a2+4ac+b2+c2d2=03.2(a(c2d2)+c(a2+b2))=64.(a2+b2)(c2d2)=11.a=c5e2.b=a2+4acc2+d2=2c2+10c+d2253.d=ac+c2+b2c+3a=2c3+15c2+32c+52.b=2c3+15c21282c+54.4c4+40c3+75c2125c+6894171614(2c+5)2=064(c6+15c5+75c4+125c3+4c2+20c+1)=0c6+15c5+75c4+125c3+4c2+20c+1=0c=u156u6754u4+193916u21716164=0u=vv3754v2+193916v1716164=0v=w+7512w3+4w+1=0w=q2+p327+q243+q2p327+q243==12+849183+12849183andnowwehavetogoallthewayback...notveryfriendly...asImentionedbefore,itsalmost(ormaybeabsolutely)impossibletofindanicerexactformofw,soletmeusetheapproximationw.246266v=254+w6.00373u=25+4w22.45025c=52+25+4w2.0497482d=252w131225+4w.787215ia=5225+4w24.95025b=252+w+131225+4w5.11001ix1=a+bi10.0603x2=abi.159762x3=c+d.0497482+.787215ix4=cd.0497482.787215i

Question Number 36205    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((x^2 −1)/((x^2 +1)^2 )) x^(1/3) dx

calculate0x21(x2+1)2x13dx

Question Number 36204    Answers: 0   Comments: 1

find the value of ∫_0 ^∞ ((x^2 −1)/(x^2 +1)) ((sin(x))/x)dx

findthevalueof0x21x2+1sin(x)xdx

Question Number 36203    Answers: 0   Comments: 1

let f(t) = ∫_0 ^∞ ((cos(tx))/((2+x^2 )^2 ))dx 1) find a simple form of f(t) 2) calculate ∫_0 ^∞ ((cos(3x))/((2+x^2 )^2 ))dx

letf(t)=0cos(tx)(2+x2)2dx1)findasimpleformoff(t)2)calculate0cos(3x)(2+x2)2dx

Question Number 36202    Answers: 0   Comments: 1

calculate ∫_0 ^∞ ((x^2 dx)/((x^2 +1)^3 ))

calculate0x2dx(x2+1)3

Question Number 36201    Answers: 0   Comments: 1

calculate ∫_0 ^(π/2) (dθ/(1+2sin^2 θ))

calculate0π2dθ1+2sin2θ

Question Number 36200    Answers: 0   Comments: 4

calculate ∫_0 ^(2π) (dθ/((2+cosθ)^2 ))

calculate02πdθ(2+cosθ)2

Question Number 36198    Answers: 0   Comments: 1

let f(z) = ((z^2 +1)/(z^4 −1)) find (a_(k)) the poles of f and calculate Res(f,a_k )

letf(z)=z2+1z41find(ak)thepolesoffandcalculateRes(f,ak)

Question Number 36197    Answers: 0   Comments: 1

find the value of ∫_0 ^(2π) (dx/(cos^2 x +3 sin^2 x))

findthevalueof02πdxcos2x+3sin2x

Question Number 36196    Answers: 0   Comments: 0

let ρ>0 and C the circle x^2 +y^2 =ρ^2 calculate ∫_C ydx +xy dy

letρ>0andCthecirclex2+y2=ρ2calculateCydx+xydy

Question Number 36195    Answers: 0   Comments: 1

let C ={(x,y)∈R^2 / 0≤x≤1 and y=2x^2 } calculate ∫_C x^2 ydx +(x^2 −y^2 )dy

letC={(x,y)R2/0x1andy=2x2}calculateCx2ydx+(x2y2)dy

Question Number 36194    Answers: 0   Comments: 0

let D ={(x,y,z)∈R^2 / 0<z<1 and x^2 +y^2 <z^2 } calculate ∫∫_D xyzdxdydz

letD={(x,y,z)R2/0<z<1andx2+y2<z2}calculateDxyzdxdydz

Question Number 36193    Answers: 0   Comments: 1

let D ={(x,y)∈ R^2 / x^2 +y^2 −x<0 and x^2 +y^2 −y >0 and y>0} calculate∫∫_D (x+y)^2 dxdy

letD={(x,y)R2/x2+y2x<0andx2+y2y>0andy>0}calculateD(x+y)2dxdy

Question Number 36192    Answers: 0   Comments: 1

let D ={(x,y)∈ R^2 /x^2 +y^2 <1} find the value of ∫∫_D ((dxdy)/(x^2 +y^(2 ) + 2))

letD={(x,y)R2/x2+y2<1}findthevalueofDdxdyx2+y2+2

Question Number 36191    Answers: 0   Comments: 1

let D = {(x,y)∈R^2 /x>0 ,y>0,x+y<1} 1) calculate ∫∫_D ((xy)/(x^2 +y^2 ))dxdy 2) let a>0 ,b>0 calculate ∫∫_D a^x b^y dxdy

letD={(x,y)R2/x>0,y>0,x+y<1}1)calculateDxyx2+y2dxdy2)leta>0,b>0calculateDaxbydxdy

Question Number 36190    Answers: 0   Comments: 1

calculate ∫∫_D (x+y)e^(x+y) dxdy with D = {(x,y)∈R^2 / 0<x<2 and 1<y<2 }

calculateD(x+y)ex+ydxdywithD={(x,y)R2/0<x<2and1<y<2}

Question Number 36189    Answers: 0   Comments: 1

let F(x)=∫_0 ^∞ ((e^(−x^2 t) (√t))/(1+t^2 ))dt calculate lim_(x→+∞) F(x) .

letF(x)=0ex2tt1+t2dtcalculatelimx+F(x).

Question Number 36188    Answers: 0   Comments: 1

find the value of ∫_0 ^∞ ((√t)/(1+t^2 ))dt

findthevalueof0t1+t2dt

Question Number 36187    Answers: 0   Comments: 3

let I_n (x)= ∫_0 ^∞ ((t sin(t))/((t^2 +x^2 )^n ))dt 1) find a relation between I_(n+1) and I_n 2) calculate I_2 (x) and I_3 (x) 3) calculate ∫_0 ^∞ ((tsin(t))/((2+t^2 )^2 ))dt

letIn(x)=0tsin(t)(t2+x2)ndt1)findarelationbetweenIn+1andIn2)calculateI2(x)andI3(x)3)calculate0tsin(t)(2+t2)2dt

Question Number 36186    Answers: 0   Comments: 1

find nature of ∫_1 ^(+∞) (√t) sin(t^2 )dt .

findnatureof1+tsin(t2)dt.

Question Number 36185    Answers: 0   Comments: 2

study the vonvergence of ∫_1 ^(+∞) ((e^(−(1/t)) −cos((1/t)))/t)dt

studythevonvergenceof1+e1tcos(1t)tdt

Question Number 36184    Answers: 0   Comments: 1

study the convergence of ∫_1 ^(+∞) ((cos(t))/(√t))dt

studytheconvergenceof1+cos(t)tdt

Question Number 36183    Answers: 0   Comments: 0

calculate ∫_1 ^(+∞) arctan((1/t))dt

calculate1+arctan(1t)dt

Question Number 36182    Answers: 2   Comments: 1

calculate ∫_1 ^(+∞) (dt/(t(√(1+t^2 ))))

calculate1+dtt1+t2

Question Number 36181    Answers: 0   Comments: 1

let I(ξ) = ∫_ξ ^(1−ξ) (dt/(1−(t−ξ)^2 )) find lim_(ξ→0^+ ) I(ξ)

letI(ξ)=ξ1ξdt1(tξ)2findlimξ0+I(ξ)

  Pg 1662      Pg 1663      Pg 1664      Pg 1665      Pg 1666      Pg 1667      Pg 1668      Pg 1669      Pg 1670      Pg 1671   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com