Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1668

Question Number 36180    Answers: 1   Comments: 1

calculate ∫_0 ^1 ((ln(t))/((1+t)^2 ))dt

calculate01ln(t)(1+t)2dt

Question Number 36179    Answers: 0   Comments: 1

let f(x,y) = ((xy)/(x+y)) 1) find D_f 2)calcule x(∂f/∂x)(x,y) +y (∂f/∂y)(x,y) interms of f(x,y)

letf(x,y)=xyx+y1)findDf2)calculexfx(x,y)+yfy(x,y)intermsoff(x,y)

Question Number 36178    Answers: 0   Comments: 1

let f(x,y)=ln((√(x^2 +y^2 ))) calculate (∂^2 f/∂x^2 )(x,y)+(∂^2 f/∂y^2 )

letf(x,y)=ln(x2+y2)calculate2fx2(x,y)+2fy2

Question Number 36177    Answers: 0   Comments: 1

let f(x)= arctan((x/y)) calculate (∂^2 f/∂x^2 )(x,y) , (∂^2 f/∂y^2 )(x,y), (∂^2 f/(∂x∂y))(x,y) (∂^2 f/(∂y∂x))(x,y)

letf(x)=arctan(xy)calculate2fx2(x,y),2fy2(x,y),2fxy(x,y)2fyx(x,y)

Question Number 36176    Answers: 0   Comments: 0

let f(x,y) =(x^2 +y^2 )sin{ (1/(√(x^2 +y^2 )))} if(x,y)=(0,0) and f(0,0)=0 prove that f is differenciable at all point of R^2 2) prove that (∂f/∂x) and (∂f/∂y) are not differdnciable at (0,0)

letf(x,y)=(x2+y2)sin{1x2+y2}if(x,y)=(0,0)andf(0,0)=0provethatfisdifferenciableatallpointofR22)provethatfxandfyarenotdifferdnciableat(0,0)

Question Number 36175    Answers: 0   Comments: 0

let g(x,y) = ((1+x+y)/(x^2 −y^2 )) is g have a limit at (0,0)?

letg(x,y)=1+x+yx2y2isghavealimitat(0,0)?

Question Number 36174    Answers: 0   Comments: 0

find lim_((x,y)→(0,0)) ((1−cos((√(xy))))/y)

findlim(x,y)(0,0)1cos(xy)y

Question Number 36173    Answers: 0   Comments: 1

calculate (∂f/∂x) and (∂f/∂y) in this cases 1) f(x,y)= e^(−x) sin(2y +1) 2)f(x,y) =(x^2 +y^2 )e^(−xy) 3)f(x,y) = (x/(x^2 +y^2 ))

calculatefxandfyinthiscases1)f(x,y)=exsin(2y+1)2)f(x,y)=(x2+y2)exy3)f(x,y)=xx2+y2

Question Number 36168    Answers: 0   Comments: 3

let A(t) = ∫_(−∞) ^(+∞) ((sin(xt))/(( x +1+i)^2 )) dx with t from R 2) calculate A(t) 2) extract Re(A(t)) and Im(A(t)) 3) find the value of ∫_(−∞) ^(+∞) ((cos(3x))/((x+1+i)^2 ))dx

letA(t)=+sin(xt)(x+1+i)2dxwithtfromR2)calculateA(t)2)extractRe(A(t))andIm(A(t))3)findthevalueof+cos(3x)(x+1+i)2dx

Question Number 36167    Answers: 0   Comments: 2

let give I = ∫_0 ^∞ (dx/((x^2 +i)^2 )) 1) extract Re(I) and Im(I) 2) find the value of I 3) calculate Re(I) and Im(I) .

letgiveI=0dx(x2+i)21)extractRe(I)andIm(I)2)findthevalueofI3)calculateRe(I)andIm(I).

Question Number 36166    Answers: 0   Comments: 1

Find the middle term in the expansion of (x^ + (3/x))^9

Findthemiddletermintheexpansionof(x+3x)9

Question Number 36163    Answers: 0   Comments: 3

Question Number 36154    Answers: 0   Comments: 0

Q. If x≠y≠z and determinant ((x,x^3 ,(x^4 −1)),(y,y^3 ,(y^4 −1)),((z ),z^3 ,(z^4 −1)))=0 Prove that xyz(xy+yz+zx)=(x+y+z) please help.

Q.Ifxyzand|xx3x41yy3y41zz3z41|=0Provethatxyz(xy+yz+zx)=(x+y+z)pleasehelp.

Question Number 36153    Answers: 0   Comments: 1

(((x+yi−2)^2 )/(x−yi+1))

(x+yi2)2xyi+1

Question Number 36140    Answers: 1   Comments: 1

Question Number 36148    Answers: 0   Comments: 0

[2^x −^(+ 3) 1 4^(2y+x) x6]=[3^(0−7) 2x]

[2x+314x62y+x]=[3072x]

Question Number 36132    Answers: 0   Comments: 7

a+b=10.........(i) ab+c=0..........(ii) ac+d=6..........(iii) ad=−1...........(iv) (a,b,c,d)=? Note: This problem is related to solve the equation (t^4 +10t+6t−1=0) of Q#35844

a+b=10.........(i)ab+c=0..........(ii)ac+d=6..........(iii)ad=1...........(iv)(a,b,c,d)=?Note:Thisproblemisrelatedtosolvetheequation(t4+10t+6t1=0)ofYou can't use 'macro parameter character #' in math mode

Question Number 36128    Answers: 3   Comments: 3

∫sin^8 xdx ∫sin^6 xdx

sin8xdxsin6xdx

Question Number 36126    Answers: 0   Comments: 4

x^4 +10x^3 +6x−1 =^(?) (x^2 +(((√5)−1)/2))(x^2 +10x−(((√5)+1)/2))

x4+10x3+6x1=?(x2+512)(x2+10x5+12)

Question Number 36120    Answers: 1   Comments: 0

3(√(200×1080))

3200×1080

Question Number 36119    Answers: 0   Comments: 3

3(√(433^ ))

3433^

Question Number 36115    Answers: 0   Comments: 1

Question Number 36110    Answers: 0   Comments: 0

{Δ1 3 6 / ×<⌈+2/ 47

{Δ136/×<+2/47

Question Number 36104    Answers: 0   Comments: 1

If f:R→R is a function such that ∣ f(x) − f(y)∣ ≤ ∣ sin x − sin y ∣∀x,y∈R, Then f(x) is (1) Bijective (2) many−one (3) periodic (4) non−periodic

Iff:RRisafunctionsuchthatf(x)f(y)sinxsinyx,yR,Thenf(x)is(1)Bijective(2)manyone(3)periodic(4)nonperiodic

Question Number 36103    Answers: 3   Comments: 0

convert 0.26999999...into fraction (a/b) where a≠0

convert0.26999999...intofractionabwherea0

Question Number 36101    Answers: 2   Comments: 2

  Pg 1663      Pg 1664      Pg 1665      Pg 1666      Pg 1667      Pg 1668      Pg 1669      Pg 1670      Pg 1671      Pg 1672   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com