Question and Answers Forum |
AllQuestion and Answers: Page 1678 |
if y=((sin^(−1) x)/(1−x^2 )) show that (1−x^2 )(dy/dx) −xy=1 |
find ∫_0 ^π ((xdx)/(1+sinx)) |
calculate ∫_0 ^π ((x dx)/(3 +cosx)) . |
study the convergence of ∫_1 ^(+∞) ((e^(−3x) −e^(−2x) )/x^2 )dx |
study the convergence of ∫_0 ^∞ ((e^(−x) −e^(−x^2 ) )/x)dx . |
letf(x)=arctan(1+ix) with ∣x∣<1 developp f at integr serie. |
let f(x)= e^(−2x) arctanx 1) calculate f^((n)) (x) 2) find f^((n)) (0) 3) developp f at integr serie |
let f(x) =e^(−x^n ) with n fromN developp f at integr serie . |
what is the value of cos z and sinz if z=re^(iθ) r>0 ? |
what is the value of cos(1+i) and cos(1−i)? |
find the value of integral ∫_0 ^∞ e^(−(2+ia)^2 t^2 ) dt with a from R ∣a∣<1. |
find the value of integral ∫_0 ^∞ e^(−px) ((sin(qx))/(√x))dx with p>0 and q>0 |
1) calculate f(a) = ∫_0 ^π (dx/(a sin^2 x +cos^2 x)) with a>0 2) find the value of g(a) = ∫_0 ^π ((sin^2 x)/((a sin^2 x +cos^2 x)^2 ))dx |
1) find f(a) = ∫_0 ^(2π) (dt/(a cos^2 t + sin^2 t)) with a≠0 2) find g(a) = ∫_0 ^(2π) ((cos^2 t)/((a cos^2 t +sin^2 t)^2 ))dt |
calculate ∫_0 ^(2π) ((1+2cost)/(5+4cost))dt |
what is the value of cos(i+j) with i^2 =−1 and j =e^(i((2π)/3)) ? |
let ∣x∣<1 prove that arctanx =(i/2)ln(((i+x)/(i−x))) |
let z from C prove that e^z = Σ_(n=0) ^∞ (z^n /(n!)) . |
let z from C and f(z)= ((2z)/((z−1)(2z +1))) developp f at integr serie. |
let z ∈C prove that cosz =ch(iz) and sinz=sh(iz) |
prove that ∫_0 ^∞ (t^(a−1) /(1+t))dt =(π/(sin(πa))) that we know 0<a<1 . |
calculate ∫_0 ^∞ ((x sin(2x))/(x^2 +4))dx |
study the function f_n (x)=arcos(ncosx) n≥1 integr. |
find the value of ∫_(−∞) ^(+∞) ((cosx +cos(2x))/(x^2 +9))dx |
let a>0 b ∈C and Re(b)>0 cslculate ∫_(−∞) ^(+∞) (e^(iax) /(x−ib))dx and ∫_(−∞) ^(+∞) (e^(iax) /(x+ib))dx |
find the values of ∫_0 ^∞ cos(λx^2 )dx and ∫_0 ^∞ sin(λx^2 )dx with λ>0 . 2) find the values of ∫_0 ^∞ cos(x^2 )dx and ∫_0 ^∞ sin(x^2 )dx( integrals of fresnel) |
Pg 1673 Pg 1674 Pg 1675 Pg 1676 Pg 1677 Pg 1678 Pg 1679 Pg 1680 Pg 1681 Pg 1682 |