Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1682

Question Number 34901    Answers: 0   Comments: 3

∫_(−π/2) ^(+π/2) (√(cos^(2n−1) x−cos^(2n+1) x))dx =[−((2cos^((2n+1)/2) x)/(2n+1))]_(−π/2) ^(+π/2) =0? What is the mistake in above? ∫_(−π/2) ^(+π/2) (√(cos^(2n−1) x−cos^(2n+1) x))dx =2∫_0 ^(π/2) (√(cos^(2n−1) x−cos^(2n+1) x))dx =(4/(2n+1)) (this is correct answer)

π/2+π/2cos2n1xcos2n+1xdx=[2cos2n+12x2n+1]π/2+π/2=0?Whatisthemistakeinabove?π/2+π/2cos2n1xcos2n+1xdx=20π/2cos2n1xcos2n+1xdx=42n+1(thisiscorrectanswer)

Question Number 34878    Answers: 1   Comments: 0

show that C_(n−1) ^(n+r−1) =C_r ^(n+r−1)

showthatCn+r1n1=Cn+r1r

Question Number 34877    Answers: 2   Comments: 1

4 couples are to take a photograph with a newly wedded couple in a wedding party.In how many ways can this be done if: i)the celebrated couple must stand in the middle ii)each couple must stand next to each other iii)the celebrated couple must not stand next to each other

4couplesaretotakeaphotographwithanewlyweddedcoupleinaweddingparty.Inhowmanywayscanthisbedoneif:i)thecelebratedcouplemuststandinthemiddleii)eachcouplemuststandnexttoeachotheriii)thecelebratedcouplemustnotstandnexttoeachother

Question Number 34870    Answers: 3   Comments: 4

Question Number 34866    Answers: 0   Comments: 0

find f(x)=∫_0 ^∞ ((arctan(x(t +(1/t))))/(1+t^2 ))dt

findf(x)=0arctan(x(t+1t))1+t2dt

Question Number 34865    Answers: 0   Comments: 0

let f(x)= e^(−(√(1+2x))) developp f at integr serie .

letf(x)=e1+2xdeveloppfatintegrserie.

Question Number 34864    Answers: 0   Comments: 0

let f(x)=x arctan(1+e^(−x) ) developp f at intrgr serie .

letf(x)=xarctan(1+ex)developpfatintrgrserie.

Question Number 34863    Answers: 0   Comments: 1

let f(x)= ((artan(x+1))/(1+2x)) developp f at integr serie .

letf(x)=artan(x+1)1+2xdeveloppfatintegrserie.

Question Number 34862    Answers: 2   Comments: 8

find the value of f(x) = ∫_0 ^π ((cosx)/(1+2sin(2x)))dx

findthevalueoff(x)=0πcosx1+2sin(2x)dx

Question Number 34850    Answers: 2   Comments: 0

Question Number 34849    Answers: 0   Comments: 2

let f(x) = (e^(−x) /(2+x)) developp f at integr serie.

letf(x)=ex2+xdeveloppfatintegrserie.

Question Number 34843    Answers: 0   Comments: 1

lim_ _(x→∞) ((ln x)/x) = ? You can only use series expansion / sandwich theorem!

limxlnxx=?Youcanonlyuseseriesexpansion/sandwichtheorem!

Question Number 34827    Answers: 1   Comments: 5

Find ∫ Sin^6 x dx

FindSin6xdx

Question Number 34821    Answers: 2   Comments: 1

Find range of y=(x/((x−1)(x−2))) .

Findrangeofy=x(x1)(x2).

Question Number 34792    Answers: 2   Comments: 0

solve for x 4x=2^x

solveforx4x=2x

Question Number 34845    Answers: 0   Comments: 0

f(x)=cos(x) g(x)=2^x f:R→R g:R→R^+ [f(x)]^2 +[f(π/2−x)]^2 =((log_2 g(x))/x);x≠0 f(g(x)x)=[f(g(x−1)x)]^2 +[f(π/2−g(x−1)x)]^2 find f and g

f(x)=cos(x)g(x)=2xf:RRg:RR+[f(x)]2+[f(π/2x)]2=log2g(x)x;x0f(g(x)x)=[f(g(x1)x)]2+[f(π/2g(x1)x)]2findfandg

Question Number 34803    Answers: 1   Comments: 2

Question Number 34781    Answers: 1   Comments: 0

Question Number 34774    Answers: 1   Comments: 1

find lim_(n→+∞) ((n^p sin^2 (n!))/n^(p+1) ) with0<p<1 .

findlimn+npsin2(n!)np+1with0<p<1.

Question Number 34771    Answers: 0   Comments: 1

let A(x)= ∫_0 ^1 ln(1+ix^2 )dx find a simple form of f(x) (x∈R)

letA(x)=01ln(1+ix2)dxfindasimpleformoff(x)(xR)

Question Number 34770    Answers: 1   Comments: 2

let f(x)= ln(1+ix^2 ) 1) extrsct Re(f(x)) and Im(f(x)) 2) developp f at integr serie 3) calculate f^′ (x) by two methods

letf(x)=ln(1+ix2)1)extrsctRe(f(x))andIm(f(x))2)developpfatintegrserie3)calculatef(x)bytwomethods

Question Number 34765    Answers: 1   Comments: 0

Question Number 34762    Answers: 1   Comments: 0

Question Number 34760    Answers: 2   Comments: 0

Question Number 34759    Answers: 1   Comments: 0

Question Number 34755    Answers: 1   Comments: 5

lim_(x→0) ((1/x) − ((ln^(1000) (1 + x))/x^(1001) ))

limx0(1xln1000(1+x)x1001)

  Pg 1677      Pg 1678      Pg 1679      Pg 1680      Pg 1681      Pg 1682      Pg 1683      Pg 1684      Pg 1685      Pg 1686   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com