Question and Answers Forum |
AllQuestion and Answers: Page 1684 |
find lim_(n→+∞) (1/n^3 ) Σ_(k=1) ^n k^2 sin(((kπ)/n)) |
calculate Σ_(n=3) ^∞ ((2n−1)/(n^3 −4n)) . |
let U_n =(1/(n!)) ∫_0 ^1 (arcsinx)^n dx calculate lim_(n→+∞) U_n . |
prove that Σ_(k=1) ^n sin((k/n^2 )) =(1/2) +(1/(2n)) +o((1/n)) |
cslculate Σ_(n=2) ^∞ ln(1+(((−1)^n )/n)) |
calculate Σ_(n=2) ^∞ ((1/(√(n−1))) + (1/(√(n+1))) −(2/(√n))) |
decompose F(x) = (((2n)!)/((x^2 −1)(x^2 −2)....(x^2 −n))) |
decompose the fraction F(x)= (1/((x+2)( x^n −1))) with n ∈ N^★ |
let U_n = (π/4) −Σ_(k=0) ^n (((−1)^k )/(2k+1)) calcilate Σ_(n=0) ^∞ U_n |
find?the nature of Σ_(n=0) ^∞ sin{π(2+(√3) )^n } |
calculate Σ_(n=0) ^∞ ln(cos((a/2^n ))) |
calculate lim_(x→0) { ((1+tanx)/(1+thx))}^(1/(sinx)) . |
decompose inside C(x) the fraction F(x) = (x^2 /(x^4 −2x^2 cos(2a) +1)) . |
let f(x) = (x/(4x^2 −1)) 1) find f^((n)) (x) and f^((n)) (0) 2) developp f at ontegr serie . |
prove that ∀ n≥3 (√n) <^n (√(n!)) |
prove that Σ_(k=0) ^(n−1) [x +(k/n)] =[nx] ∀ n∈ ∈N^★ |
prove that Σ_(k=0) ^(2n−1) (((−1)^k )/(k+1)) =Σ_(k=n+1) ^(2n) (1/k) |
provethat e = Σ_(k=0) ^n (1/(k!)) +∫_0 ^1 (((1−t)^n )/(n!)) e^t dt . |
find ∫_0 ^π ((x sinx)/(1+cos^2 x)) dx |
solve (((1+iz)/(1−iz)))^n = ((1+itanα)/(1−itanα)) with −(π/2)<α<(π/2) |
prove that ∀n∈N ∣sin(nx)∣≤n∣sinx∣ . |
calculste Σ_(n=1) ^∞ arctan((2/n^2 )). |
let P(x)=(1+x+ix^2 )^n −(1+x −ix^2 )^n 1) find the roots of P(x) 2) factorize inside C[x] P(x) 3) factorize indide R[x] P(x). |
find the roots of?p(x) = x^(2n) −2x^n cos(nθ) +1 2)?factorize p(x) |
solve (x+1)^n = e^(2ina) then find the value of P_n = Π_(k=0) ^(n−1) sin(a +((kπ)/n)) |
simplify sin^2 ( ((arccosx)/2)) |
Pg 1679 Pg 1680 Pg 1681 Pg 1682 Pg 1683 Pg 1684 Pg 1685 Pg 1686 Pg 1687 Pg 1688 |