Question and Answers Forum |
AllQuestion and Answers: Page 1686 |
let give p(x)=(x+1)^n −(x−1)^n 1) factorize p(x) inside C[x] 2) find the value of Π_(k=1) ^p cotan(((kπ)/(2p+1))) |
decompose inside R(x) thefraction F(x)= ((x^5 +1)/(x^2^ (x−1)^2 )) . |
let p(x)= x^n +x+1 ∈C[x] and z∈C/p(z)=0 prove that ∣z∣<2 . |
prove that ∀ p∈K[x] p(x) −x divide p(p(x))−x |
simplify Σ_(k=0) ^n ((k/n) −α)^2 C_n ^k x^k (1−x)^(n−k ) α∈C. |
1) prove that Σ_(k=1) ^n H_k =(n+1)H_n −n 2) prove that Σ_(k=1) ^n H_k ^2 =(n+1)H_n ^2 −(3n+1)H_n +2n H_n =Σ_(k=1) ^n (1/k) . |
simplify Σ_(k=1) ^n (((−1)^(k−1) )/k) C_n ^k |
prove that Σ_(k=0) ^p (−1)^k C_n ^k =(−1)^p C_(n−1) ^p |
1) calculate ∫_(−∞) ^(+∞) ((cos(αx^n ))/(x^2 +x +1)) dx with n integr natural 2) find the value of ∫_(−∞) ^∞ ((cos( α x^(2n) ))/(x^2 +x +1))dx 3) calculate ∫_(−∞) ^(+∞) ((cos(π x^3 ))/(x^2 +x +1)) dx |
![]() |
![]() |
A machine with a velocity ratio of 5 requires 150J of work to raise a 500N load through a vertical distance of 200cm,calculate: a)the efficiency b)the M.A of the machine |
x determinant ((2),())−2x−15=0 |
find the value of ∫_0 ^1 ((arctanx)/((1+x^2 )^2 )) dx |
find the value of ∫_0 ^(+∞) ((arctan(x))/((1+x^2 )^2 )) dx |
decompose inside R(x) the fraction F(x)= (1/((x−3)^6 (x+2))) . |
lim_(x→∞) (((a−1+b^(1/x) )/a))^x = ? (a,b>0) |
∫(dx/(sinx+cosx+tanx+cosecx+secx+cotx)) |
![]() |
a) lim_(x→(π/4)) (((cos x+sin x)^3 −2(√2))/(1−sin 2x)) =? b) lim_(x→0) (sin x)^(1/x) = ? |
Solve for x : 5 log_4 x + 48 log_x 4 = (x/8) |
Find radius c in terms of radii a and b. |
lim_(x→0) log _e {((sin (a+(1/x)))/(sin a))}^x , 0<a<(π/2) . |
lim_(x→0) log _(tan^2 x) (tan^2 2x) = ? |
1−(1/2)+(1/3)−(1/5)+.... find the sum of the series |
![]() |
Pg 1681 Pg 1682 Pg 1683 Pg 1684 Pg 1685 Pg 1686 Pg 1687 Pg 1688 Pg 1689 Pg 1690 |