Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1686

Question Number 34606    Answers: 0   Comments: 0

let give p(x)=(x+1)^n −(x−1)^n 1) factorize p(x) inside C[x] 2) find the value of Π_(k=1) ^p cotan(((kπ)/(2p+1)))

letgivep(x)=(x+1)n(x1)n1)factorizep(x)insideC[x]2)findthevalueofk=1pcotan(kπ2p+1)

Question Number 34605    Answers: 0   Comments: 0

decompose inside R(x) thefraction F(x)= ((x^5 +1)/(x^2^ (x−1)^2 )) .

decomposeinsideR(x)thefractionF(x)=x5+1x2(x1)2.

Question Number 34604    Answers: 0   Comments: 0

let p(x)= x^n +x+1 ∈C[x] and z∈C/p(z)=0 prove that ∣z∣<2 .

letp(x)=xn+x+1C[x]andzC/p(z)=0provethatz∣<2.

Question Number 34603    Answers: 0   Comments: 0

prove that ∀ p∈K[x] p(x) −x divide p(p(x))−x

provethatpK[x]p(x)xdividep(p(x))x

Question Number 34602    Answers: 0   Comments: 0

simplify Σ_(k=0) ^n ((k/n) −α)^2 C_n ^k x^k (1−x)^(n−k ) α∈C.

simplifyk=0n(knα)2Cnkxk(1x)nkαC.

Question Number 34596    Answers: 0   Comments: 0

1) prove that Σ_(k=1) ^n H_k =(n+1)H_n −n 2) prove that Σ_(k=1) ^n H_k ^2 =(n+1)H_n ^2 −(3n+1)H_n +2n H_n =Σ_(k=1) ^n (1/k) .

1)provethatk=1nHk=(n+1)Hnn2)provethatk=1nHk2=(n+1)Hn2(3n+1)Hn+2nHn=k=1n1k.

Question Number 34595    Answers: 0   Comments: 0

simplify Σ_(k=1) ^n (((−1)^(k−1) )/k) C_n ^k

simplifyk=1n(1)k1kCnk

Question Number 34594    Answers: 0   Comments: 0

prove that Σ_(k=0) ^p (−1)^k C_n ^k =(−1)^p C_(n−1) ^p

provethatk=0p(1)kCnk=(1)pCn1p

Question Number 34593    Answers: 0   Comments: 0

1) calculate ∫_(−∞) ^(+∞) ((cos(αx^n ))/(x^2 +x +1)) dx with n integr natural 2) find the value of ∫_(−∞) ^∞ ((cos( α x^(2n) ))/(x^2 +x +1))dx 3) calculate ∫_(−∞) ^(+∞) ((cos(π x^3 ))/(x^2 +x +1)) dx

1)calculate+cos(αxn)x2+x+1dxwithnintegrnatural2)findthevalueofcos(αx2n)x2+x+1dx3)calculate+cos(πx3)x2+x+1dx

Question Number 34587    Answers: 2   Comments: 1

Question Number 34585    Answers: 1   Comments: 1

Question Number 34571    Answers: 0   Comments: 0

A machine with a velocity ratio of 5 requires 150J of work to raise a 500N load through a vertical distance of 200cm,calculate: a)the efficiency b)the M.A of the machine

Amachinewithavelocityratioof5requires150Jofworktoraisea500Nloadthroughaverticaldistanceof200cm,calculate:a)theefficiencyb)theM.Aofthemachine

Question Number 34567    Answers: 1   Comments: 0

x determinant ((2),())−2x−15=0

x|2|2x15=0

Question Number 34562    Answers: 1   Comments: 1

find the value of ∫_0 ^1 ((arctanx)/((1+x^2 )^2 )) dx

findthevalueof01arctanx(1+x2)2dx

Question Number 34561    Answers: 0   Comments: 1

find the value of ∫_0 ^(+∞) ((arctan(x))/((1+x^2 )^2 )) dx

findthevalueof0+arctan(x)(1+x2)2dx

Question Number 34614    Answers: 0   Comments: 1

decompose inside R(x) the fraction F(x)= (1/((x−3)^6 (x+2))) .

decomposeinsideR(x)thefractionF(x)=1(x3)6(x+2).

Question Number 34554    Answers: 1   Comments: 3

lim_(x→∞) (((a−1+b^(1/x) )/a))^x = ? (a,b>0)

limx(a1+b1xa)x=?(a,b>0)

Question Number 34546    Answers: 0   Comments: 0

∫(dx/(sinx+cosx+tanx+cosecx+secx+cotx))

dxsinx+cosx+tanx+cosecx+secx+cotx

Question Number 34543    Answers: 0   Comments: 2

Question Number 34540    Answers: 0   Comments: 2

a) lim_(x→(π/4)) (((cos x+sin x)^3 −2(√2))/(1−sin 2x)) =? b) lim_(x→0) (sin x)^(1/x) = ?

a)limxπ4(cosx+sinx)3221sin2x=?b)limx0(sinx)1x=?

Question Number 34533    Answers: 2   Comments: 5

Solve for x : 5 log_4 x + 48 log_x 4 = (x/8)

Solveforx:5log4x+48logx4=x8

Question Number 34528    Answers: 1   Comments: 1

Find radius c in terms of radii a and b.

Findradiuscintermsofradiiaandb.

Question Number 34522    Answers: 0   Comments: 2

lim_(x→0) log _e {((sin (a+(1/x)))/(sin a))}^x , 0<a<(π/2) .

limx0loge{sin(a+1x)sina}x,0<a<π2.

Question Number 34516    Answers: 2   Comments: 1

lim_(x→0) log _(tan^2 x) (tan^2 2x) = ?

limx0logtan2x(tan22x)=?

Question Number 34504    Answers: 1   Comments: 1

1−(1/2)+(1/3)−(1/5)+.... find the sum of the series

112+1315+....findthesumoftheseries

Question Number 34501    Answers: 1   Comments: 1

  Pg 1681      Pg 1682      Pg 1683      Pg 1684      Pg 1685      Pg 1686      Pg 1687      Pg 1688      Pg 1689      Pg 1690   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com