Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1746

Question Number 29848    Answers: 0   Comments: 1

find Σ_(k=0) ^n cos(kx) and Σ_(k=0) ^n sin(kx) .

findk=0ncos(kx)andk=0nsin(kx).

Question Number 29847    Answers: 0   Comments: 0

θ ∈]0,π[ find he values of Σ_(n=1) ^∞ (1/n)cos(nθ) and Σ_(n=1) ^∞ (1/n)sin(nθ) .

θ]0,π[findhevaluesofn=11ncos(nθ)andn=11nsin(nθ).

Question Number 29846    Answers: 0   Comments: 1

give the developpement at integr series for f(x)=((ln(1+x)−ln(1−x))/x) 2)find lim_(x→0) f(x).

givethedeveloppementatintegrseriesforf(x)=ln(1+x)ln(1x)x2)findlimx0f(x).

Question Number 29845    Answers: 0   Comments: 2

find lim_(x→0) ((tanx −x−(1/3)x^3 )/x^5 ) .

findlimx0tanxx13x3x5.

Question Number 29844    Answers: 0   Comments: 0

let give f_α (t)=cos(αt) 2π periodic with t ∈[−π,π]and α∈ R−Z 1) developp f_α at fourier serie and prove that cotan(απ)= (1/(απ)) +Σ_(n=1) ^∞ ((2α)/(π(α^2 −n^2 ))) 2)let x∈]0,π[ ant g(t)=cotant −(1/t) if t∈]0,x]andg(0)=0 prove that g is continue in[0,x] and find ∫_0 ^x g(t)dt 3)prove that ∀ t∈[0,x] g(t)=2t Σ_(n=1) ^∞ (1/(t^2 −n^2 π^(24) )) 4) chow that Π_(n=1) ^∞ (1−(x^2 /(n^2 π^2 )))= ((sinx)/x) and for x∈]−π,π[ sinx=x Π_(n=1) ^∞ (1−(x^2 /(n^2 π^2 ))) .

letgivefα(t)=cos(αt)2πperiodicwitht[π,π]andαRZ1)developpfαatfourierserieandprovethatcotan(απ)=1απ+n=12απ(α2n2)2)letx]0,π[antg(t)=cotant1tift]0,x]andg(0)=0provethatgiscontinuein[0,x]andfind0xg(t)dt3)provethatt[0,x]g(t)=2tn=11t2n2π244)chowthatn=1(1x2n2π2)=sinxxandforx]π,π[sinx=xn=1(1x2n2π2).

Question Number 29842    Answers: 0   Comments: 1

prove that ∀ x∈]0,1[ (1/(Γ(x).Γ(1−x)))=x Π_(n=1) ^∞ (1−(x^2 /n^2 )).

provethatx]0,1[1Γ(x).Γ(1x)=xn=1(1x2n2).

Question Number 29841    Answers: 0   Comments: 0

prove that ∀ x∈]0,1[ Γ(x).Γ(1−x)= (π/(sin(πx))) (compliments formula).

provethatx]0,1[Γ(x).Γ(1x)=πsin(πx)(complimentsformula).

Question Number 29885    Answers: 1   Comments: 2

∫(1/(1+sinx))dx=?

11+sinxdx=?

Question Number 29839    Answers: 0   Comments: 0

find Π_(n=1) ^∞ (1−(x^2 /(n^2 π^2 ))).

findn=1(1x2n2π2).

Question Number 29838    Answers: 0   Comments: 0

find Π_(n=1) ^∞ (1−(1/(4n^2 ))).

findn=1(114n2).

Question Number 29837    Answers: 0   Comments: 0

let give T_n (x)=cos(n arcosx) with x∈[−1,1] 1) prove that T_n is a polynomial and T_n ∈Z[x] 2)calculate T_1 , T_2 , T_3 ,and T_4 3) prove that T_(n+2) (x)=2x T_(n+1) (x)−T_n (x) 4)find the roots of T_n and factorize T_n (x).

letgiveTn(x)=cos(narcosx)withx[1,1]1)provethatTnisapolynomialandTnZ[x]2)calculateT1,T2,T3,andT43)provethatTn+2(x)=2xTn+1(x)Tn(x)4)findtherootsofTnandfactorizeTn(x).

Question Number 29836    Answers: 0   Comments: 0

let give u_n = Σ_(q=1) ^n (1/(n^2 +q)) find lim_(n→+∞) (1−nu_n )n.

letgiveun=q=1n1n2+qfindlimn+(1nun)n.

Question Number 29835    Answers: 0   Comments: 0

let give f(x)=−x +2 +((√(x+1))/x) 1) study the variation of and give the graph C_f 2)give the equation of tangent at C_f in point A(1,f(1))

letgivef(x)=x+2+x+1x1)studythevariationofandgivethegraphCf2)givetheequationoftangentatCfinpointA(1,f(1))

Question Number 29834    Answers: 0   Comments: 1

find (1/(cos^4 ((π/9)))) +(1/(cos^4 (((3π)/9)))) + (1/(cos^4 (((5π)/9)))) +(1/(cos^4 (((7π)/9)))) .

find1cos4(π9)+1cos4(3π9)+1cos4(5π9)+1cos4(7π9).

Question Number 29833    Answers: 1   Comments: 0

find cos^4 ((π/8)) +cos^4 (((3π)/8)) +cos^4 (((5π)/8)) +cos^4 (((7π)/8)).

findcos4(π8)+cos4(3π8)+cos4(5π8)+cos4(7π8).

Question Number 29832    Answers: 0   Comments: 0

p is a polynomial having n roots x_i with x_i ≠x_j for i≠j prove that Σ_(i=1) ^n ((p^(′′) (x_i ))/(p^′ (x_i )))=0

pisapolynomialhavingnrootsxiwithxixjforijprovethati=1np(xi)p(xi)=0

Question Number 29821    Answers: 1   Comments: 3

((sin 16x)/(sin x)) ?pls help.

sin16xsinx?plshelp.

Question Number 29820    Answers: 1   Comments: 3

Question Number 29805    Answers: 0   Comments: 1

f(x)=(x+a_1 )(x+a_2 )(x+a_3 )...(x+a_n ) find the coefficient of term x^k (0≤k≤n)

f(x)=(x+a1)(x+a2)(x+a3)...(x+an)findthecoefficientoftermxk(0kn)

Question Number 29818    Answers: 1   Comments: 0

4, 8, 16, 31, 57, 99, 163, T_8 ,T_9 , .... Find T_8 , T_9 .

4,8,16,31,57,99,163,T8,T9,....FindT8,T9.

Question Number 29794    Answers: 0   Comments: 9

Fluids:

Fluids:

Question Number 29831    Answers: 0   Comments: 0

let give f(x)= (1/(1+x^2 )) 1)prove that prove that f^((n)) (x)=((p_n (x))/((1+x^2 )^(n+1) )) with p_n is a polynomial 2) prove that p_(n+1) (x)=(1+x^2 )p_n ^′ (x) −2(n+1)p_n (x) 3) calculate p_0 (x) ,p_1 (x) ,p_2 (x) ,p_3 (x) .

letgivef(x)=11+x21)provethatprovethatf(n)(x)=pn(x)(1+x2)n+1withpnisapolynomial2)provethatpn+1(x)=(1+x2)pn(x)2(n+1)pn(x)3)calculatep0(x),p1(x),p2(x),p3(x).

Question Number 29786    Answers: 0   Comments: 0

Question Number 29785    Answers: 0   Comments: 0

Question Number 29778    Answers: 1   Comments: 0

Question Number 29803    Answers: 0   Comments: 3

  Pg 1741      Pg 1742      Pg 1743      Pg 1744      Pg 1745      Pg 1746      Pg 1747      Pg 1748      Pg 1749      Pg 1750   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com