Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1750

Question Number 28685    Answers: 0   Comments: 0

find the value of I=∫∫_D x^3 dxdy with D= {(x,y)∈R^2 /1≤x≤2 and x^2 −y^2 ≥1 }.

findthevalueofI=Dx3dxdywithD={(x,y)R2/1x2andx2y21}.

Question Number 28684    Answers: 0   Comments: 0

find sum of S(x)= Σ_(n=1) ^∞ (−1)^(n−1) (x^(2n+1) /(4n^2 −1)) .

findsumofS(x)=n=1(1)n1x2n+14n21.

Question Number 28683    Answers: 0   Comments: 1

developp f(x)=e^(−αx) 2π periodic at Fourier serie with α>0.

developpf(x)=eαx2πperiodicatFourierseriewithα>0.

Question Number 28682    Answers: 0   Comments: 2

nature of the serie Σ_(n=0) ^∞ tan(((2n+1)/n^3 )) .

natureoftheserien=0tan(2n+1n3).

Question Number 28681    Answers: 0   Comments: 0

give a equivalent of w_n = Σ_(k=n+1) ^∞ (1/(k!)) .

giveaequivalentofwn=k=n+11k!.

Question Number 28680    Answers: 0   Comments: 0

find lim_(ξ→0) ∫_0 ^(π/2) (dx/(√(sin^2 x +ξcos^2 x))) .

findlimξ00π2dxsin2x+ξcos2x.

Question Number 28679    Answers: 0   Comments: 1

f function contnue on [0,1] .prove that lim_(n→+∞) n∫_0 ^1 t^n f(t)dt=f(1).

ffunctioncontnueon[0,1].provethatlimn+n01tnf(t)dt=f(1).

Question Number 28678    Answers: 0   Comments: 0

let give A= (((1 (α/n))),((−(α/n) 1)) ) with n ∈N^∗ and α∈R find lim_(n→+∞) A^n .

letgiveA=(1αnαn1)withnNandαRfindlimn+An.

Question Number 28677    Answers: 0   Comments: 1

find ∫_0 ^1 ((lnx)/(x−1))dx

find01lnxx1dx

Question Number 28676    Answers: 0   Comments: 1

let give u_n = ∫_(nπ) ^((n+1)π) e^(−λt) ((sint)/(√t)) with λ>0 calculate Σ_(n=0) ^(+∞) u_n .

letgiveun=nπ(n+1)πeλtsinttwithλ>0calculaten=0+un.

Question Number 28756    Answers: 0   Comments: 1

find in terms of λ ∫_0 ^∞ e^(−λt) ((sint)/(√t)) dt with λ>0

findintermsofλ0eλtsinttdtwithλ>0

Question Number 28648    Answers: 0   Comments: 0

If θ = log_e [tanh(((3π)/8))] , Prove that 3tanh(2θ) = 2(√2)

Ifθ=loge[tanh(3π8)],Provethat3tanh(2θ)=22

Question Number 28646    Answers: 1   Comments: 0

An object of mass 24kg is accelerated up a frictionless plane inclined at an angle of 37°. Starting at the bottom from the rest,it covers a distance of 18m in 3secs. a)what is the average power required to accomplish the process? b)what is the instantaneous power required at the end of the 3second interval?

Anobjectofmass24kgisacceleratedupafrictionlessplaneinclinedatanangleof37°.Startingatthebottomfromtherest,itcoversadistanceof18min3secs.a)whatistheaveragepowerrequiredtoaccomplishtheprocess?b)whatistheinstantaneouspowerrequiredattheendofthe3secondinterval?

Question Number 28644    Answers: 0   Comments: 4

A man pushes a box of 40kg up an incline plane of 15°,if the man applies a horizontal force of 200N and the box moves up the plane a distance of 20m at a constant velocity and the coefficient of friction is 0.10, find a)workdone by the man on the box. b)workdone against friction.

Amanpushesaboxof40kgupaninclineplaneof15°,ifthemanappliesahorizontalforceof200Nandtheboxmovesuptheplaneadistanceof20mataconstantvelocityandthecoefficientoffrictionis0.10,finda)workdonebythemanonthebox.b)workdoneagainstfriction.

Question Number 28643    Answers: 0   Comments: 0

Question Number 28642    Answers: 0   Comments: 0

f(x)=4x−1for0<x<4 find f(0) ,f(1) f(1.2),f(4),f(−1)

f(x)=4x1for0<x<4findf(0),f(1)f(1.2),f(4),f(1)

Question Number 28640    Answers: 2   Comments: 2

Each of the angle between vectors a, b and c is equal to 60°. If ∣a∣=4, ∣b∣=2 and ∣c∣=6, then the modulus of a+b+c is

Eachoftheanglebetweenvectorsa,bandcisequalto60°.Ifa∣=4,b∣=2andc∣=6,thenthemodulusofa+b+cis

Question Number 28626    Answers: 0   Comments: 9

Question Number 28624    Answers: 1   Comments: 4

Question Number 28622    Answers: 0   Comments: 2

find Σ_(k=0) ^(+∞) arctan( (1/(k^2 +k+1))) .

findk=0+arctan(1k2+k+1).

Question Number 28621    Answers: 0   Comments: 0

let give u_n =(([(√(n+1])) −[(√(n])))/n) find Σ u_n .

letgiveun=[n+1][n]nfindΣun.

Question Number 28620    Answers: 0   Comments: 4

calculate Σ_(n=p) ^(+∞) C_(n ) ^p x^n .

calculaten=p+Cnpxn.

Question Number 28619    Answers: 0   Comments: 1

calculate Σ_(k=2) ^(+∞) ln(1−(1/k^2 )) .

calculatek=2+ln(11k2).

Question Number 28618    Answers: 0   Comments: 0

let give u_n = Σ_(k=n) ^(+∞) (((−1)^k )/(√(k+1))) study the convergence of Σ u_n .

letgiveun=k=n+(1)kk+1studytheconvergenceofΣun.

Question Number 28617    Answers: 0   Comments: 0

let give a sequence of reals (a_n )_n / a_n >0 and U_n = (a_n /((1+a_1 )(1+a_2 )....(1+a_n ))) 1) prove that Σ u_n converges 2) calculate Σ u_n if u_n = (1/(√n)) .

letgiveasequenceofreals(an)n/an>0andUn=an(1+a1)(1+a2)....(1+an)1)provethatΣunconverges2)calculateΣunifun=1n.

Question Number 28616    Answers: 0   Comments: 0

let give u_n = (1+(1/n))^n −e find nature of Σ u_n .

letgiveun=(1+1n)nefindnatureofΣun.

  Pg 1745      Pg 1746      Pg 1747      Pg 1748      Pg 1749      Pg 1750      Pg 1751      Pg 1752      Pg 1753      Pg 1754   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com