Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1787

Question Number 26159    Answers: 1   Comments: 0

If x^2 + y^2 + 2xy + 2x + 2y + k = 0 represents pair of straight lines then find the value of k.

Ifx2+y2+2xy+2x+2y+k=0representspairofstraightlinesthenfindthevalueofk.

Question Number 26156    Answers: 1   Comments: 0

a two digit number is 3 more than 4 times the sum of its digits. if 18 is added to this number .the sum is equal to number obtained by interchanging the digits.find the number

atwodigitnumberis3morethan4timesthesumofitsdigits.if18isaddedtothisnumber.thesumisequaltonumberobtainedbyinterchangingthedigits.findthenumber

Question Number 26153    Answers: 1   Comments: 0

ratio of income of two persons is 9 is to 7.ratio of their expenses is 4 is to 3 .every person saves rupees 200. find income of each.

ratioofincomeoftwopersonsis9isto7.ratiooftheirexpensesis4isto3.everypersonsavesrupees200.findincomeofeach.

Question Number 26148    Answers: 2   Comments: 2

Question Number 26147    Answers: 1   Comments: 0

There are 5 more girls than boys in a class. If 2 boys join the class, the ratio of girls to boys will be 5:4. Find the number of of girls in the class.

Thereare5moregirlsthanboysinaclass.If2boysjointheclass,theratioofgirlstoboyswillbe5:4.Findthenumberofofgirlsintheclass.

Question Number 26142    Answers: 0   Comments: 0

Prove that If f(x) is Riemann integrable on [a,b] and ∃M>0 s.t. ∀x∈[a,b] (f(x)≠0 and ∣f(x)∣<M and ∣(1/(f(x)))∣<M), then (1/(f(x))) is Riemann integrable on [a,b].

ProvethatIff(x)isRiemannintegrableon[a,b]andM>0s.t.x[a,b](f(x)0andf(x)∣<Mand1f(x)∣<M),then1f(x)isRiemannintegrableon[a,b].

Question Number 26143    Answers: 2   Comments: 1

2000^(3000) vs 3000^(2000) who is stronger ?

20003000vs30002000whoisstronger?

Question Number 26135    Answers: 1   Comments: 1

Prove that b=2asin^2 θ ; when acosθ−bsinθ=c and θ=45°

Provethatb=2asin2θ;whenacosθbsinθ=candθ=45°

Question Number 26133    Answers: 1   Comments: 1

find the value of (C_n ^(0 ) )^2 +(C_n ^1 )^2 +(C_n ^2 )^2 +...(C_n ^n )^2 .

findthevalueof(Cn0)2+(Cn1)2+(Cn2)2+...(Cnn)2.

Question Number 26132    Answers: 0   Comments: 1

let put S_n =Σ_(k=1) ^(k=n) (((−1)^k )/k) find S_(n ) in terms of H_n then lim_(n−>∝) S_n H_n = Σ_(k=1) ^(k=n) (1/k) ( harmonic serie)

letputSn=k=1k=n(1)kkfindSnintermsofHnthenlimn>∝SnHn=k=1k=n1k(harmonicserie)

Question Number 26127    Answers: 1   Comments: 0

y+2y^3 y^((1)) =(x+4yln (y))y^((1))

y+2y3y(1)=(x+4yln(y))y(1)

Question Number 26125    Answers: 0   Comments: 1

Question Number 26121    Answers: 0   Comments: 0

answer to26109 S_n = Σ_(k=1) ^(k=n) (1/(k^2 (k+1)^2 )) we decompose F(X) = (1/(X^2 (X+1)^2 )) = (a/X) +(b/X^2^ ) +(c/(X+1)) +(d/((X+1)^2 )) we find F(X) = ((−2)/X) +(1/X^2 ) + (2/(X+1)) + (1/((X+1)^2 )) so S_n = −2Σ_(k=1) ^(k=n) (1/k) +2Σ_(k=1) ^(k=n) (1/(k+1)) +Σ_(k=1) ^(k=n) (1/k^2^ ) + Σ_(k=1) ^(k=n) (1/((k+1)^2 )) but Σ_(k=1) ^(k=n) (1/k) = H_n Σ_(k=1) ^(k=n) (1/(k+1))= H_(n+1) −1 Σ_(k=1) ^(k=n) (1/((k+1)^2 )) = Σ_(k=1) ^(k=n) (1/k^2 ) + (1/((n+1)^2 )) −1⇒ S_n = 2(H_(n+1) −H_n ) +2 Σ_(k=1) ^(k=n) (1/k^2 ) −3 but lim_(n−>∝) (H_(n+1) − H_n ) =0 and Σ_(k=1) ^∝ (1/k^2 ) = (π^2 /6) ⇒ lim_(n−>∝) S_n = 2 (π^2 /6) −3 = (π^2 /3) −3 .

answerto26109Sn=k=1k=n1k2(k+1)2wedecomposeF(X)=1X2(X+1)2=aX+bX2+cX+1+d(X+1)2wefindF(X)=2X+1X2+2X+1+1(X+1)2soSn=2k=1k=n1k+2k=1k=n1k+1+k=1k=n1k2+k=1k=n1(k+1)2butk=1k=n1k=Hnk=1k=n1k+1=Hn+11k=1k=n1(k+1)2=k=1k=n1k2+1(n+1)21Sn=2(Hn+1Hn)+2k=1k=n1k23butlimn>∝(Hn+1Hn)=0andk=11k2=π26limn>∝Sn=2π263=π233.

Question Number 26117    Answers: 1   Comments: 0

(1/6)(√((3log1728)/(1+(1/2)log36+(1/3)log8))) simplify the question above

163log17281+12log36+13log8simplifythequestionabove

Question Number 26115    Answers: 1   Comments: 0

x^2 +(1/x^2 )=3 thrn find the valu of( x−(1/x))^2

x2+1x2=3thrnfindthevaluof(x1x)2

Question Number 26126    Answers: 0   Comments: 1

using 1st principle find the derivative of y=x^x

using1stprinciplefindthederivativeofy=xx

Question Number 26113    Answers: 1   Comments: 0

Question Number 26107    Answers: 0   Comments: 0

answer to 26024 let put c= ∫_0 ^∞ cos(ax^2 )dx and c = ∫_0 ^∞ sin(ax^2 )dx ew have c−is = ∫_0 ^∞ e^(−iax^2 ) dx =2^(−1) ∫_R e^(−iax^2 ) dx and i put x^(1/2) =r(x)(notation) so 2(c−is) = ∫_R e^(−(r(ia)x)^2 ) dx and by the changement t= r(ia) x we find 2(c+is) = (r(ia))^(−1) ∫_R e^(−t^2 ) dt = r(π)/r(ia) but r(ia) =r(i) r(a) = r(a) e^ −−>2(c+is) = r(π) r(a)^(−1) e^(−iπ/4) ^) −−> c = r(2π)/_(4r(a)) and s = r(2π)/_(4r(a))

answerto26024letputc=0cos(ax2)dxandc=0sin(ax2)dxewhavecis=0eiax2dx=21Reiax2dxandiputx1/2=r(x)(notation)so2(cis)=Re(r(ia)x)2dxandbythechangementt=r(ia)xwefind2(c+is)=(r(ia))1Ret2dt=r(π)/r(ia)butr(ia)=r(i)r(a)=r(a)e>2(c+is)=r(π)r(a)1eiπ/4)>c=r(2π)/4r(a)ands=r(2π)/4r(a)

Question Number 26111    Answers: 0   Comments: 2

find the radius of convergence for the serie Σ_(n=1) ^∝ H_n x^n H_n = Σ_(k=1) ^(k=n) (1/k) .

findtheradiusofconvergencefortheserien=1HnxnHn=k=1k=n1k.

Question Number 26223    Answers: 1   Comments: 1

let put ξ(x)= Σ_(n=1) ^∝ (1/n^x ) with x>1 and δ(x) =Σ_(n=1) ^∝ (((−1)^n )/n^x ) find a relation between ξ(x) and δ(x).

letputξ(x)=n=11nxwithx>1andδ(x)=n=1(1)nnxfindarelationbetweenξ(x)andδ(x).

Question Number 26098    Answers: 0   Comments: 0

Question Number 26090    Answers: 1   Comments: 0

∫((asin^3 θ+bcos^3 θ)/(sin^2 θ.cos^2 θ))dθ

asin3θ+bcos3θsin2θ.cos2θdθ

Question Number 26087    Answers: 0   Comments: 2

Given f(x) = (1 − x + x^2 − x^3 + ... − x^(2015) + x^(2016) )^2 Find the sum of all odd coeffisiens! Ex. f(x) = (x^2 + x + 1)^2 = 1x^4 + 2x^3 + 3x^2 + 2x + 1 The sum of odd coeffisien is 1 + 3 = 4

Givenf(x)=(1x+x2x3+...x2015+x2016)2Findthesumofalloddcoeffisiens!Ex.f(x)=(x2+x+1)2=1x4+2x3+3x2+2x+1Thesumofoddcoeffisienis1+3=4

Question Number 26078    Answers: 1   Comments: 0

x^2 −x−42 factorise

x2x42factorise

Question Number 26073    Answers: 0   Comments: 2

solve the differential equation(D^2 +2D+1)y=x^2 +2x+1

solvethedifferentialequation(D2+2D+1)y=x2+2x+1

Question Number 26067    Answers: 2   Comments: 0

Find the value of ((2 + 3^2 )/(1! + 2! + 3! + 4!)) + ((3 + 4^2 )/(2! + 3! + 4! + 5!)) + ... + ((2013 + 2014^2 )/(2012! + 2013! + 2014! + 2015!))

Findthevalueof2+321!+2!+3!+4!+3+422!+3!+4!+5!+...+2013+201422012!+2013!+2014!+2015!

  Pg 1782      Pg 1783      Pg 1784      Pg 1785      Pg 1786      Pg 1787      Pg 1788      Pg 1789      Pg 1790      Pg 1791   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com